The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four...The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.展开更多
The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely use...The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely used to acquire seabed physical parameters,and less work is performed in the Arctic.In this study,two active-source OBS data collected from the 9th and 11th Chinese National Arctic Research Expedition(CHINARE)are selected to obtain the physical parameters of seabed sediments.Two kinds of energy spark are used as the active sources,while the cost function inversion method is used based on the arrival time difference between the reflected and direct waves.The thickness and sound velocity of the sediment layers are obtained by inversion,and the empirical formula is used to calculate the physical parameters of the seabed sediment,which are compared with the measured results.The cost function inversion method based on the time difference of arrival of the reflected and direct waves is tested to be effective and feasible in the inversion of seabed parameters from active-source OBS data.The method is further applied to obtain the physical parameters of Chukchi seabed sediments,which provides the idea and reference for the application of marine geophysical activesource OBS detection technology in the inversion of polar seabed physical parameters.展开更多
Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation f...Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation function(NCCF)has been widely adopted by using daily waveforms.However,it is still challenging to detect the shortterm clock drift and overcome the influence of local noise on NCCF.To address these challenges,we conduct a study on two temporary datasets,including an ocean-bottom-seismometer(OBS)dataset from the southern Mariana subduction zone and a dataset from a temporary dense network from the Weiyuan shale gas field,Sichuan,China.We first inspect the teleseismic and local event waveforms to evaluate the overall clock drift and data quality for both datasets.For the OBS dataset,NCCF using different time segments(3,6,and 12-h)beside daily waveforms data is computed to select the data length with optimal detection capability.Eventually,the 6-h segment is the preferred choice with high detection efficiency and low noise level.For the land dataset,higher drift detection is achieved by NCCF using the daily long waveforms.Meanwhile,we find that NCCF symmetry on the dense array is highly influenced by localized intense noise for large interstation distances(>1 km)but is well preserved for short interstation distances.The results have shown that the use of different segments of daily waveform data in the OBS dataset,and the careful selection of interstation distances in the land dataset substantially improved the NCCF results.All the clock drifts in both datasets are successfully corrected and verified with waveforms and NCCF.The newly developed strategies using short-segment NCCF help to overcome the existing issues to correct the clock drift of seismic data.展开更多
基金funded by the National Natural Science Foundation of China (grant no.42074149)the Natural Science Foundation of Jiangsu Province (grant no.BK20201318)。
基金supported by the Key Research and Development Project of Guangdong Province(Grant:2020B1111510001)supported by the Project of Sanya Yazhou Bay Science and Technology City(Grant No:SCKJ-JYRC-2022-14)the National Natural Science Foundation of China(Grant No:92262304).
文摘The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.
基金supported by the National Key R&D Program of China(No.2021YFC2801200)the National Natural Science Foundation of China(No.42076224)the Fundamental Research Funds for the Central Universities(No.201964015)。
文摘The acquisition of seabed physical parameters is one of the focuses of marine acoustic researches.However,the activesource ocean bottom seismometer(OBS)detection method in the marine geophysical research is rarely used to acquire seabed physical parameters,and less work is performed in the Arctic.In this study,two active-source OBS data collected from the 9th and 11th Chinese National Arctic Research Expedition(CHINARE)are selected to obtain the physical parameters of seabed sediments.Two kinds of energy spark are used as the active sources,while the cost function inversion method is used based on the arrival time difference between the reflected and direct waves.The thickness and sound velocity of the sediment layers are obtained by inversion,and the empirical formula is used to calculate the physical parameters of the seabed sediment,which are compared with the measured results.The cost function inversion method based on the time difference of arrival of the reflected and direct waves is tested to be effective and feasible in the inversion of seabed parameters from active-source OBS data.The method is further applied to obtain the physical parameters of Chukchi seabed sediments,which provides the idea and reference for the application of marine geophysical activesource OBS detection technology in the inversion of polar seabed physical parameters.
基金supported by National Science Foundation of China(U2139203)National Key R&D Program of China (2018YFC1503400)+3 种基金China Earthquake Science Experiment Project,CEA (2019CSES0107)HKSAR Research Grant Council GRF Grant (14303721,14306122)State Key Lab of Earthquake Dynamics (LED2021B03)the Faculty of Science,CUHK。
文摘Temporary seismic network deployments often suffer from incorrect timing records and thus pose a challenge to fully utilize the valuable data.To inspect and fix such time problems,the ambient noise cross-correlation function(NCCF)has been widely adopted by using daily waveforms.However,it is still challenging to detect the shortterm clock drift and overcome the influence of local noise on NCCF.To address these challenges,we conduct a study on two temporary datasets,including an ocean-bottom-seismometer(OBS)dataset from the southern Mariana subduction zone and a dataset from a temporary dense network from the Weiyuan shale gas field,Sichuan,China.We first inspect the teleseismic and local event waveforms to evaluate the overall clock drift and data quality for both datasets.For the OBS dataset,NCCF using different time segments(3,6,and 12-h)beside daily waveforms data is computed to select the data length with optimal detection capability.Eventually,the 6-h segment is the preferred choice with high detection efficiency and low noise level.For the land dataset,higher drift detection is achieved by NCCF using the daily long waveforms.Meanwhile,we find that NCCF symmetry on the dense array is highly influenced by localized intense noise for large interstation distances(>1 km)but is well preserved for short interstation distances.The results have shown that the use of different segments of daily waveform data in the OBS dataset,and the careful selection of interstation distances in the land dataset substantially improved the NCCF results.All the clock drifts in both datasets are successfully corrected and verified with waveforms and NCCF.The newly developed strategies using short-segment NCCF help to overcome the existing issues to correct the clock drift of seismic data.