如何有效检测工业病毒对应用层协议的攻击是工业控制系统入侵检测的难点问题。将Modbus TCP协议作为研究对象,结合OCSVM(one class support vector machine,OCSVM)算法,提出一种基于PCA-OCSVM异常检测方法,采用微粒子群优化(particle sw...如何有效检测工业病毒对应用层协议的攻击是工业控制系统入侵检测的难点问题。将Modbus TCP协议作为研究对象,结合OCSVM(one class support vector machine,OCSVM)算法,提出一种基于PCA-OCSVM异常检测方法,采用微粒子群优化(particle swarm optimization,PSO)算法对入侵检测模型进行优化。仿真对比分析结果表明,该方法可以高效准确识别攻击或异常行为,实现对工业控制系统的安全防护。展开更多
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t...One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.展开更多
准确提取城市不透水面对生态环境、水热循环及热岛效应等研究具有重要意义。该文利用WorldView高分辨遥感影像,提出基于PUL(Positive and Unlabeled Learning)算法的高分辨率影像城市不透水面提取方法,该方法不需要负样本数据,只需少量...准确提取城市不透水面对生态环境、水热循环及热岛效应等研究具有重要意义。该文利用WorldView高分辨遥感影像,提出基于PUL(Positive and Unlabeled Learning)算法的高分辨率影像城市不透水面提取方法,该方法不需要负样本数据,只需少量的正样本和未标记样本即可训练分类模型。结果显示,PUL算法的提取结果优于一类支持向量机(OCSVM)以及最大熵(MAXENT)模型。使用不同正样本量时,PUL的提取结果总体精度和kappa系数均优于OCSVM和MAXENT,最高总体精度为91.27%,最高kappa系数可达0.8255,可快速、有效地从高分辨率遥感影像中提取不透水面。展开更多
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin...In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.展开更多
In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two came...In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.展开更多
文摘如何有效检测工业病毒对应用层协议的攻击是工业控制系统入侵检测的难点问题。将Modbus TCP协议作为研究对象,结合OCSVM(one class support vector machine,OCSVM)算法,提出一种基于PCA-OCSVM异常检测方法,采用微粒子群优化(particle swarm optimization,PSO)算法对入侵检测模型进行优化。仿真对比分析结果表明,该方法可以高效准确识别攻击或异常行为,实现对工业控制系统的安全防护。
基金Supported by the National Natural Science Foundation of China(60603029)the Natural Science Foundation of Jiangsu Province(BK2007074)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(06KJB520132)~~
文摘One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.
文摘准确提取城市不透水面对生态环境、水热循环及热岛效应等研究具有重要意义。该文利用WorldView高分辨遥感影像,提出基于PUL(Positive and Unlabeled Learning)算法的高分辨率影像城市不透水面提取方法,该方法不需要负样本数据,只需少量的正样本和未标记样本即可训练分类模型。结果显示,PUL算法的提取结果优于一类支持向量机(OCSVM)以及最大熵(MAXENT)模型。使用不同正样本量时,PUL的提取结果总体精度和kappa系数均优于OCSVM和MAXENT,最高总体精度为91.27%,最高kappa系数可达0.8255,可快速、有效地从高分辨率遥感影像中提取不透水面。
基金This work was supported by the Research Deanship of Prince Sattam Bin Abdulaziz University,Al-Kharj,Saudi Arabia(Grant No.2020/01/17215).Also,the author thanks Deanship of college of computer engineering and sciences for technical support provided to complete the project successfully。
文摘In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.
文摘In this paper,we propose an efficient fall detection system in enclosed environments based on single Gaussian model using the maximum likelihood method.Online video clips are used to extract the features from two cameras.After the model is constructed,a threshold is set,and the probability for an incoming sample under the single Gaussian model is compared with that threshold to make a decision.Experimental results show that if a proper threshold is set,a good recognition rate for fall activities can be achieved.