OH-CATH is a novel cathelicidin identified from king cobra. It showed strong antibacterial activity against various bacteria in the presence of 1% NaCl and no haemolytic activity toward human red blood cells even at a...OH-CATH is a novel cathelicidin identified from king cobra. It showed strong antibacterial activity against various bacteria in the presence of 1% NaCl and no haemolytic activity toward human red blood cells even at a high concentration. OH-CATH might serve as model molecules for the development of antimicrobial drugs. Understanding the action mechanism of OH-CATH and the reason for its selectivity against microbes is very important for this purpose. The bactericidal effect of the king cobra antimicrobial peptide OH-CATH on Gram-negative Escherichia coli (ATCC 25922) is observed by scanning electron microscopy (SEM) and transmitted electron microscopy (TEM). The SEM and TEM results suggested that the bactericidal mechanism of OH-CATH against Escherichia coli happened in three steps. Firstly, OH-CATH attached to the negatively charged bacterial wall by positively charged amino acid residues. In the second step, the accumulated OH-CATH aggregated and damaged the bacteria membrane in a pore-forming manner. In the last step, with the damage of cell permeability, the contents of the cells were released and eventually cells died.展开更多
Cationic antimicrobial peptides (AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings ki...Cationic antimicrobial peptides (AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings king cobra cathelicidin (OH-CATH) is a 34-amino acid peptide that exerts strong antibacterial and weak hemolytic activity. The aim of this research is to evaluate the efficacy of both OH-CATH30 and its analog D-OH-CATH30 against clinical isolates comparing with routinely utilized antibiotics in vitro. In this study, 584 clinical isolates were tested (spanning 2013-2016) and the efficacy of the candidate peptides and antibiotics were determined by a broth microdilution method according to the CLSI guidelines. Among the 584 clinical isolates, 85% were susceptible to OH-CATH30 and its analogs. Both L- and D-OH-CATH30 showed higher efficacy against (toward) Gram-positive bacteria and stronger antibacterial activity against nearly all Gram-negative bacteria tested compare with antibiotics. The highest bactericidal activity was detected against Acinetobacter spp., including multi-drug-resistant Acinetobacter baumannfi (MRAB) and methicillin-resistant Staphylococcus aureus (MRSA). The overall efficacy of OH-CATH30 and its analogs was higher than that of the 9 routinely used antibiotics. OH-CATH30 is a promising candidate drug for the treatment of a wide variety of bacterial infections which are resistant to many routinely used antimicrobial agents.展开更多
文摘OH-CATH is a novel cathelicidin identified from king cobra. It showed strong antibacterial activity against various bacteria in the presence of 1% NaCl and no haemolytic activity toward human red blood cells even at a high concentration. OH-CATH might serve as model molecules for the development of antimicrobial drugs. Understanding the action mechanism of OH-CATH and the reason for its selectivity against microbes is very important for this purpose. The bactericidal effect of the king cobra antimicrobial peptide OH-CATH on Gram-negative Escherichia coli (ATCC 25922) is observed by scanning electron microscopy (SEM) and transmitted electron microscopy (TEM). The SEM and TEM results suggested that the bactericidal mechanism of OH-CATH against Escherichia coli happened in three steps. Firstly, OH-CATH attached to the negatively charged bacterial wall by positively charged amino acid residues. In the second step, the accumulated OH-CATH aggregated and damaged the bacteria membrane in a pore-forming manner. In the last step, with the damage of cell permeability, the contents of the cells were released and eventually cells died.
基金supported by grants from the National Natural Sciences Foundation of China(31572268,31560596)the Key Research Program of the Chinese Academy of Sciences(KJZD-EW-L03)+3 种基金"Yunnan Scholar"Programthe Yunnan Applied Basic Research Projects(2016FD076)the National Training Program of Innovation and Entrepreneurship for Undergraduates(201510685001201610685001)Puer University(RCXM003&CXTD011)
文摘Cationic antimicrobial peptides (AMPs) are considered as important candidate therapeutic agents, which exert potent microbicidal properties against bacteria, fungi and some viruses. Based on our previous findings king cobra cathelicidin (OH-CATH) is a 34-amino acid peptide that exerts strong antibacterial and weak hemolytic activity. The aim of this research is to evaluate the efficacy of both OH-CATH30 and its analog D-OH-CATH30 against clinical isolates comparing with routinely utilized antibiotics in vitro. In this study, 584 clinical isolates were tested (spanning 2013-2016) and the efficacy of the candidate peptides and antibiotics were determined by a broth microdilution method according to the CLSI guidelines. Among the 584 clinical isolates, 85% were susceptible to OH-CATH30 and its analogs. Both L- and D-OH-CATH30 showed higher efficacy against (toward) Gram-positive bacteria and stronger antibacterial activity against nearly all Gram-negative bacteria tested compare with antibiotics. The highest bactericidal activity was detected against Acinetobacter spp., including multi-drug-resistant Acinetobacter baumannfi (MRAB) and methicillin-resistant Staphylococcus aureus (MRSA). The overall efficacy of OH-CATH30 and its analogs was higher than that of the 9 routinely used antibiotics. OH-CATH30 is a promising candidate drug for the treatment of a wide variety of bacterial infections which are resistant to many routinely used antimicrobial agents.