The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观...提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。展开更多
针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将...针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将算法中可并行的矩阵/向量计算映射到GPU上并行执行,在面向Matlab的Jacket软件平台上对整体串行算法进行了并行化的设计与实现.在NVIDIA Tesla K20Xm GPU和Intel(R)E5-2650 CPU上进行了测试,实验结果表明:对比CPU平台的串行实现,基于GPU的A*OMP算法整体上可获得约40倍的加速,实现了在保持系统较高重构质量的同时能有效降低计算时间,较好地满足了系统实时性的需要.展开更多
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
文摘提出一种压缩感知正交匹配追踪(CS-OMP)超谐波测量新算法,即运用压缩感知理论,通过引入插值系数,基于离散傅里叶变换(DFT)系数向量和狄利克雷核矩阵,构建了高频率分辨率的压缩感知模型,并基于正交匹配追踪算法,在不增加被测数据观测时间前提下,将超谐波测量的频率分辨率提高了一个数量级。数值仿真分析以及两种非线性负荷的实测数据验证的结果表明,该算法可将测得数据频率分辨率由2 k Hz细化为200 Hz,能实现对被测信号中超谐波频率成分的精确定位,也可准确求解出其幅值信息,从而有效地弥补了DFT算法存在的观测时间与频率分辨率互相限制的固有缺陷,在更准确测量超谐波方面展现出良好前景。
文摘针对压缩感知系统实时应用的需要,探讨了A*OMP算法的并行设计及基于GPU的加速方法.将耗时长的矩阵逆运算转化为可并行的矩阵/向量操作,并结合算法本身的关联特性,进一步采用迭代法实现以降低其计算复杂度.利用GPU高效的并行运算能力,将算法中可并行的矩阵/向量计算映射到GPU上并行执行,在面向Matlab的Jacket软件平台上对整体串行算法进行了并行化的设计与实现.在NVIDIA Tesla K20Xm GPU和Intel(R)E5-2650 CPU上进行了测试,实验结果表明:对比CPU平台的串行实现,基于GPU的A*OMP算法整体上可获得约40倍的加速,实现了在保持系统较高重构质量的同时能有效降低计算时间,较好地满足了系统实时性的需要.