The hybrid calculations with ONIOM(B3LYP/6-31G*:AM1) method were carried out on the tautomerization reaction of formamide to formamidic acid in the microcontainer-encapsulated state. The free-state tautomerization...The hybrid calculations with ONIOM(B3LYP/6-31G*:AM1) method were carried out on the tautomerization reaction of formamide to formamidic acid in the microcontainer-encapsulated state. The free-state tautomerization process was also investigated with B3LYP/6-31G**//B3LYP/6-31G* method for the purpose of comparison. Bare tautomerization, H20-assisted(single-H20 or multiple-HaO) and self-assisted mechanisms were all taken into consideration for the encapsulated state. The results show that only bare tautomerization and single-H2O catalysis mechanisms are possible to the encapsulated formamide tautomerization owing to the container's size confinement effect. Geometrical changes in the complexed container and guest molecules are discussed to deeply understand the complex's structural properties. The bare tautomerization barrier in the encapsulated state increases by 23.826 kJ/mol, accounting for 12% of the corresponding total energy barrier in the free state, and the increased values for the single-H2O catalysis process are 12.958 kJ/mol, accounting for 16% of the corresponding total energy barrier, respectively. This finding suggests that the encapsulation can make the tautomerization process slightly difficult.展开更多
Cytochrome P450(CYP) 2El is a dual function monoxygenase with a crucial role in the metabolism of 6% of drugs on the market at present. The enzyme is of tremendous interest for its association with alcohol consumpti...Cytochrome P450(CYP) 2El is a dual function monoxygenase with a crucial role in the metabolism of 6% of drugs on the market at present. The enzyme is of tremendous interest for its association with alcohol consumption, diabetes, obesity and fasting. Despite the abundant experimental mutagenesis data, the molecular origin and the structural motifs for the enzymatic activity deficiencies have not been rationalized at the atomic level. In this regard, we have investigated the effects of mutation on the structural and energetic characteristics upon single point mutations in CYP2E1, N219D and $366C. The molecular dynamics(MD) simulation combined with quantum mechanics/molecular mechanics(QM/MM) and noncovalent interaction(NCI) analysis was carried out on CYP2EI and its two mutants. The results highlight the critical role of Phe207, which is responsible for both structural flexibility and energetic variation, shortening the gap between the theory and the experimentally observed results of enzymatic activity decrease, The underlying molecular mechanism of the enzymatic activity deficiencies for mutants may be attributed to the changes of spatial position of Phe207 in the two mutants. This work provides particular explanations to how mutations affect ligand-receptor interactions based on combined MD and QM/MM calculations. Furthermore, the mutational effects on the activity of CYP2E1 obtained in the present study are beneficial to both the experimental and the computational works of CYPs and may allow researchers to achieve desirable changes in enzymatic activity.展开更多
基金Supported by the Special Research Fund for the Doctoral Program of Higher Education of China(No.20040010008)the Scientific Research Fund of Beijing University of Chemical Technology, China(No.QN0411).
文摘The hybrid calculations with ONIOM(B3LYP/6-31G*:AM1) method were carried out on the tautomerization reaction of formamide to formamidic acid in the microcontainer-encapsulated state. The free-state tautomerization process was also investigated with B3LYP/6-31G**//B3LYP/6-31G* method for the purpose of comparison. Bare tautomerization, H20-assisted(single-H20 or multiple-HaO) and self-assisted mechanisms were all taken into consideration for the encapsulated state. The results show that only bare tautomerization and single-H2O catalysis mechanisms are possible to the encapsulated formamide tautomerization owing to the container's size confinement effect. Geometrical changes in the complexed container and guest molecules are discussed to deeply understand the complex's structural properties. The bare tautomerization barrier in the encapsulated state increases by 23.826 kJ/mol, accounting for 12% of the corresponding total energy barrier in the free state, and the increased values for the single-H2O catalysis process are 12.958 kJ/mol, accounting for 16% of the corresponding total energy barrier, respectively. This finding suggests that the encapsulation can make the tautomerization process slightly difficult.
基金Supported by the National Natural Science Foundation of China(No.21273095).
文摘Cytochrome P450(CYP) 2El is a dual function monoxygenase with a crucial role in the metabolism of 6% of drugs on the market at present. The enzyme is of tremendous interest for its association with alcohol consumption, diabetes, obesity and fasting. Despite the abundant experimental mutagenesis data, the molecular origin and the structural motifs for the enzymatic activity deficiencies have not been rationalized at the atomic level. In this regard, we have investigated the effects of mutation on the structural and energetic characteristics upon single point mutations in CYP2E1, N219D and $366C. The molecular dynamics(MD) simulation combined with quantum mechanics/molecular mechanics(QM/MM) and noncovalent interaction(NCI) analysis was carried out on CYP2EI and its two mutants. The results highlight the critical role of Phe207, which is responsible for both structural flexibility and energetic variation, shortening the gap between the theory and the experimentally observed results of enzymatic activity decrease, The underlying molecular mechanism of the enzymatic activity deficiencies for mutants may be attributed to the changes of spatial position of Phe207 in the two mutants. This work provides particular explanations to how mutations affect ligand-receptor interactions based on combined MD and QM/MM calculations. Furthermore, the mutational effects on the activity of CYP2E1 obtained in the present study are beneficial to both the experimental and the computational works of CYPs and may allow researchers to achieve desirable changes in enzymatic activity.