为给小麦变量施氮提供依据,利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),以相邻地...为给小麦变量施氮提供依据,利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),以相邻地块常规非变量(均一)施肥区(对照区)为对照,对变量追氮模型的可行性进行探讨,并对变量追肥处理的实际效果进行分析。结果表明,CERES-Wheat模型能较好地反映冬小麦的生长状况,在冬小麦产量预测中,目标产量与实测产量具有良好的一致性。变量施肥区的产量、籽粒蛋白质含量及经济效益均优于对照区,同时变量施肥区的籽粒产量和蛋白质含量的空间变异较对照均有所降低,说明基于高光谱响应与模拟模型的冬小麦变量追氮技术具有一定的理论意义和实用价值。展开更多
文摘为给小麦变量施氮提供依据,利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数OSAVI(Optimization of soil-adjusted vegetation index)与CERES-Wheat模型相结合进行变量施肥管理(变量区),以相邻地块常规非变量(均一)施肥区(对照区)为对照,对变量追氮模型的可行性进行探讨,并对变量追肥处理的实际效果进行分析。结果表明,CERES-Wheat模型能较好地反映冬小麦的生长状况,在冬小麦产量预测中,目标产量与实测产量具有良好的一致性。变量施肥区的产量、籽粒蛋白质含量及经济效益均优于对照区,同时变量施肥区的籽粒产量和蛋白质含量的空间变异较对照均有所降低,说明基于高光谱响应与模拟模型的冬小麦变量追氮技术具有一定的理论意义和实用价值。