We report on 43 GHz v=1, J=1-0 SiO maser proper motions in the circumstellar envelope of the M-type semi-regular variable star VX Sgr, observed by Very Long Baseline Array (VLBA) at 3 epochs during 1999 April-May. A...We report on 43 GHz v=1, J=1-0 SiO maser proper motions in the circumstellar envelope of the M-type semi-regular variable star VX Sgr, observed by Very Long Baseline Array (VLBA) at 3 epochs during 1999 April-May. Applying the statistical parallax analysis to these proper motions, we estimated a distance of VX Sgr of 1.57±0.27kpc, which is consistent with that based on the proper motions of H20 masers, or on the assumption that VX Sgr belongs to the Sgr OB1 association. At this distance, VX Sgr can be classified as a red supergiant. Comparing the statistical parallax method with those of model fitting and annual parallax, we think that the statistical parallax method may be a good way of estimating SiO maser distances at present.展开更多
The aim of this study is to fuse high resolution optical and microwave images and classify urban land cover types using a refined Mahalanobis distance classifier. For the data fusion, multiplicative method, Brovey tra...The aim of this study is to fuse high resolution optical and microwave images and classify urban land cover types using a refined Mahalanobis distance classifier. For the data fusion, multiplicative method, Brovey transform, intensity-huesaturation method and principal component analysis are used and the results are compared. The refined method uses spatial thresholds defined from local knowledge and the bands defined from multiple sources. The result of the refined Mahalanobis distance method is compared with the result of a standard technique and it demonstrates a higher accuracy. Overall, the research indicates that the combined use of optical and microwave images can notably improve the interpretation and classification of land cover types and the refined Mahalanobis classification is a powerful tool to increase classification accuracy.展开更多
Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of eff...Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of efforts trying to automate the classification operation and retrieve similar images accurately.To reach this goal,we developed a VGG19 deep convolutional neural network to extract the visual features from the images automatically.Then,the distances among the extracted features vectors are measured and a similarity score is generated using a Siamese deep neural network.The Siamese model built and trained at first from scratch but,it didn’t generated high evaluation metrices.Thus,we re-built it from VGG19 pre-trained deep learning model to generate higher evaluation metrices.Afterward,three different distance metrics combined with the Sigmoid activation function are experimented looking for the most accurate method formeasuring the similarities among the retrieved images.Reaching that the highest evaluation parameters generated using the Cosine distance metric.Moreover,the Graphics Processing Unit(GPU)utilized to run the code instead of running it on the Central Processing Unit(CPU).This step optimized the execution further since it expedited both the training and the retrieval time efficiently.After extensive experimentation,we reached satisfactory solution recording 0.98 and 0.99 F-score for the classification and for the retrieval,respectively.展开更多
Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria ...Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.展开更多
基金the National Natural Science Foundation of China.
文摘We report on 43 GHz v=1, J=1-0 SiO maser proper motions in the circumstellar envelope of the M-type semi-regular variable star VX Sgr, observed by Very Long Baseline Array (VLBA) at 3 epochs during 1999 April-May. Applying the statistical parallax analysis to these proper motions, we estimated a distance of VX Sgr of 1.57±0.27kpc, which is consistent with that based on the proper motions of H20 masers, or on the assumption that VX Sgr belongs to the Sgr OB1 association. At this distance, VX Sgr can be classified as a red supergiant. Comparing the statistical parallax method with those of model fitting and annual parallax, we think that the statistical parallax method may be a good way of estimating SiO maser distances at present.
文摘The aim of this study is to fuse high resolution optical and microwave images and classify urban land cover types using a refined Mahalanobis distance classifier. For the data fusion, multiplicative method, Brovey transform, intensity-huesaturation method and principal component analysis are used and the results are compared. The refined method uses spatial thresholds defined from local knowledge and the bands defined from multiple sources. The result of the refined Mahalanobis distance method is compared with the result of a standard technique and it demonstrates a higher accuracy. Overall, the research indicates that the combined use of optical and microwave images can notably improve the interpretation and classification of land cover types and the refined Mahalanobis classification is a powerful tool to increase classification accuracy.
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4400271DSR01).
文摘Classifying the visual features in images to retrieve a specific image is a significant problem within the computer vision field especially when dealing with historical faded colored images.Thus,there were lots of efforts trying to automate the classification operation and retrieve similar images accurately.To reach this goal,we developed a VGG19 deep convolutional neural network to extract the visual features from the images automatically.Then,the distances among the extracted features vectors are measured and a similarity score is generated using a Siamese deep neural network.The Siamese model built and trained at first from scratch but,it didn’t generated high evaluation metrices.Thus,we re-built it from VGG19 pre-trained deep learning model to generate higher evaluation metrices.Afterward,three different distance metrics combined with the Sigmoid activation function are experimented looking for the most accurate method formeasuring the similarities among the retrieved images.Reaching that the highest evaluation parameters generated using the Cosine distance metric.Moreover,the Graphics Processing Unit(GPU)utilized to run the code instead of running it on the Central Processing Unit(CPU).This step optimized the execution further since it expedited both the training and the retrieval time efficiently.After extensive experimentation,we reached satisfactory solution recording 0.98 and 0.99 F-score for the classification and for the retrieval,respectively.
文摘Gravity as a fundamental force plays a dominant role in the formation and evolution of cosmic objects and leaves its effect in the emergence of symmetric and asymmetric structures.Thus,analyzing the symmetry criteria allows us to uncover mechanisms behind the gravity interaction and understand the underlying physical processes that contribute to the formation of large-scale structures such as galaxies.We use a segmentation process using intensity thresholding and the k-means clustering algorithm to analyze radio galaxy images.We employ a symmetry criterion and explore the relation between morphological symmetry in radio maps and host galaxy properties.Optical properties(stellar mass,black hole mass,optical size(R_(50)),concentration,stellar mass surface density(μ_(50)),and stellar age)and radio properties(radio flux density,radio luminosity,and radio size)are considered.We found that there is a correlation between symmetry and radio size,indicating larger radio sources have smaller symmetry indices.Therefore,size of radio sources should be considered in any investigation of symmetry.Weak correlations are also observed with other properties,such as R_(50)for FRI galaxies and stellar age.We compare the symmetry differences between FRI and FRII radio galaxies.FRII galaxies show higher symmetry in 1.4 GHz and 150 MHz maps.Investigating the influence of radio source sizes,we discovered that this result is independent of the sizes of radio sources.These findings contribute to our understanding of the morphological properties and analyses of radio galaxies.