期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Contrastive Observation of Solar Thermal and Photovoltaic Resource
1
作者 BIAN Zeqiang LYU Wenhua CHONG Wei 《Instrumentation》 2017年第3期1-6,共6页
Solar thermal and photovoltaic applications are the most w idely used and the most successful w ay of commercial development in solar energy applications. Observation and assessment of solar thermal and photovoltaic r... Solar thermal and photovoltaic applications are the most w idely used and the most successful w ay of commercial development in solar energy applications. Observation and assessment of solar thermal and photovoltaic resources are the basis and key of their large-scale development and utilization. Using the observational data carried out from Beijing southern suburbs observation station of China M eteorological Administration in summer of 2009,preliminary solar thermal and photovoltaic resources characteristics for different w eather conditions,different angle and different directions are analyzed. The results show that:(1) In sunny,cloudy or rainy w eather conditions,both of solar thermal and photovoltaic sensors daily irradiance have consistent change in trend. Solar thermal irradiance is larger than photovoltaic. Under sunny conditions,solar thermal global radiation has about 2.7%higher than the photovoltaic global radiation. Under cloudy w eather conditions,solar thermal global radiation has about 3. 9%higher than the photovoltaic. Under rainy w eather conditions,solar thermal global radiation has about 20% higher than the photovoltaic.(2) For different inclined plane daily global radiation,southern latitude-15 °incline is the maximum and southern vertical surface is the minimum. The order from large to small is southern latitude-15 ° incline,southern latitude incline,southern latitude+15 °incline,horizontal surface and southern vertical surface. Southern latitude-15 °incline global radiation has about 41% higher than the southern vertical surface.(3) For different orientation vertical surface daily global radiation,southern vertical surface is the maximum and w estern vertical surface is the minimum,w hich eastern vertical surface is in the middle. Southern vertical surface global radiation has about 20% higher than the w estern vertical surface. 展开更多
关键词 Solar Thermal Resource Photovoltaic Resource contrastive observation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部