This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land sur...This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.展开更多
The observation data collected by DSG3 precipitation phenomenon observation instrument and the manual parallel observation data in 5 stations of Gansu Province from January 2018 to December 2019 were compared and anal...The observation data collected by DSG3 precipitation phenomenon observation instrument and the manual parallel observation data in 5 stations of Gansu Province from January 2018 to December 2019 were compared and analyzed.The results show that the missing observation rate of the observation instrument was 0%,and the performance of the equipment was good;the empty forecast rate of drizzle was the highest;the false forecast rate of hail was the highest,and the accuracy of automatic observation records was relatively poor;the capture rate and empty forecast rate of rain and snow were higher,while their false forecast rate and missing forecast rate were lower.The capture rate and missing forecast rate of sleet were higher,and its missing forecast rate was low;the accuracy of automatic observation was better.It shows that the empty forecast and false forecast of DSG3 precipitation phenomenon observation instrument mainly occurred in weak precipitation phenomena,and the recognition of drizzle and hail was poor.展开更多
Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference be...Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference between automatic-observed and manual-observed wind speed, including the levels of speed wind, observation instruments and different regions. According to these elements, correction has been conducted, and find that the correction according to the level of wind speed has the best correction effect.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stabilit...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2 nd Version(RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-frameworkbased control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.展开更多
We investigate the influence of assumed height for the thin shell ionosphere model on the Total Electron Content(TEC) derived from a small scale Global Positioning System(GPS) network. TEC and instrumental bias ar...We investigate the influence of assumed height for the thin shell ionosphere model on the Total Electron Content(TEC) derived from a small scale Global Positioning System(GPS) network. TEC and instrumental bias are determined by applying a grid-based algorithm to the data on several geomagnetically quiet days covering a 10 month period in 2006. Comparisons of TEC and instrumental bias are made among assumed heights from 250 km to 700 km with an interval of 10 km. While the TEC variations with time follow the same trend, TEC tends to increase with the height of the thin shell. The difference in TEC between heights 250 km and 700 km can be as large as~8 TECU in both daytime and nighttime. The times at which the TEC reaches its peak or valley do not vary much with the assumed heights. The instrumental biases, especially bias from the satellite, can vary irregularly with assumed height. Several satellites show a large deviation of~3 ns for heights larger than 550 km. The goodness of fit for different assumed heights is also examined. The data can be generally well-fitted for heights from 350 km to 700 km. A large deviation happens at heights lower than 350 km. Using the grid-based algorithm, there is no consensus on assumed height as related to data fitting. A thin shell height in the range 350-500 km can be a reasonable compromise between data fitting and peak height of the ionosphere.展开更多
A brief description of the NAO coude echelle spectrograph mounted on the 2.16 m telescope at Xinglong station is given. This echelle spectrograph is located at the coudé focus with a prism cross disperser. The ec...A brief description of the NAO coude echelle spectrograph mounted on the 2.16 m telescope at Xinglong station is given. This echelle spectrograph is located at the coudé focus with a prism cross disperser. The echelle image covers the spectral region from 330 to 1100 nm displayed in 80 spectral orders in one exposure through two light beams. With a slit height of 2mm, spectral orders are separated by 15 to 23 pixels in blue region and by 7 to 19 pixels in red region. Alternatively, two additional resolution modes corresponding to different focal length cameras with resolving power R 16000, 170 000 in the blue beam and R = 13000, 170 000 in the red beam could be provided by this spectrograph. The bias, dark, wavelength calibration, flat field and science exposure are described in details. The limiting magnitude for 1 hour exposure with an S/N ratio of 100 scales to V = 9.5 in the red path and to V = 7.2 in the blue path.展开更多
The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorith...The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorithm to optimize the coverage of nodes and designed an energy-efficient node coverage optimization method.In the coverage optimization,the coverage rate and the number of working nodes are considered comprehensively,and the fitness value calculation is improved.The experimental results reveal that the modified ABC algorithm has better coverage optimization performance than the original ABC algorithm,genetic algorithm(GA),and particle swarm optimization(PSO)algorithm.展开更多
基金supported by the National Science Foundation of China (Grant Nos. 40830957 and 40575006)
文摘This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.
文摘The observation data collected by DSG3 precipitation phenomenon observation instrument and the manual parallel observation data in 5 stations of Gansu Province from January 2018 to December 2019 were compared and analyzed.The results show that the missing observation rate of the observation instrument was 0%,and the performance of the equipment was good;the empty forecast rate of drizzle was the highest;the false forecast rate of hail was the highest,and the accuracy of automatic observation records was relatively poor;the capture rate and empty forecast rate of rain and snow were higher,while their false forecast rate and missing forecast rate were lower.The capture rate and missing forecast rate of sleet were higher,and its missing forecast rate was low;the accuracy of automatic observation was better.It shows that the empty forecast and false forecast of DSG3 precipitation phenomenon observation instrument mainly occurred in weak precipitation phenomena,and the recognition of drizzle and hail was poor.
基金Supported by Meteorological Data Sharing Center Project (2005DKA31700-01,GX07-01-01)2009 Specific Research in Non-profit Sector (200906041-053)
文摘Comparing and analyzing the difference between automatic-observed and manual-observed wind speed based on the wind speed parallel observations in two methods, we find that many elements can influence the difference between automatic-observed and manual-observed wind speed, including the levels of speed wind, observation instruments and different regions. According to these elements, correction has been conducted, and find that the correction according to the level of wind speed has the best correction effect.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFE0100300)the Joint Research Fund in Astronomy(Grant Nos.U1531132,U1631129 and U1231205)under cooperative agreement between the National Natural Science Foundation of China(NSFC)+1 种基金the Chinese Academy of Sciences(CAS)the National Natural Science Foundation of China(Grant Nos.11603044,11703044,11503042,11403009and 11463003)
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST) is the largest existing spectroscopic survey telescope, having 32 scientific charge-coupled-device(CCD) cameras for acquiring spectra. Stability and automation of the camera-control software are essential, but cannot be provided by the existing system. The Remote Telescope System 2 nd Version(RTS2) is an open-source and automatic observatory-control system. However, all previous RTS2 applications were developed for small telescopes. This paper focuses on implementation of an RTS2-based camera-control system for the 32 CCDs of LAMOST. A virtual camera module inherited from the RTS2 camera module is built as a device component working on the RTS2 framework. To improve the controllability and robustness, a virtualized layer is designed using the master-slave software paradigm, and the virtual camera module is mapped to the 32 real cameras of LAMOST. The new system is deployed in the actual environment and experimentally tested. Finally, multiple observations are conducted using this new RTS2-frameworkbased control system. The new camera-control system is found to satisfy the requirements for automatic camera control in LAMOST. This is the first time that RTS2 has been applied to a large telescope, and provides a referential solution for full RTS2 introduction to the LAMOST observatory control system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11473045,11403045 and 11503040)
文摘We investigate the influence of assumed height for the thin shell ionosphere model on the Total Electron Content(TEC) derived from a small scale Global Positioning System(GPS) network. TEC and instrumental bias are determined by applying a grid-based algorithm to the data on several geomagnetically quiet days covering a 10 month period in 2006. Comparisons of TEC and instrumental bias are made among assumed heights from 250 km to 700 km with an interval of 10 km. While the TEC variations with time follow the same trend, TEC tends to increase with the height of the thin shell. The difference in TEC between heights 250 km and 700 km can be as large as~8 TECU in both daytime and nighttime. The times at which the TEC reaches its peak or valley do not vary much with the assumed heights. The instrumental biases, especially bias from the satellite, can vary irregularly with assumed height. Several satellites show a large deviation of~3 ns for heights larger than 550 km. The goodness of fit for different assumed heights is also examined. The data can be generally well-fitted for heights from 350 km to 700 km. A large deviation happens at heights lower than 350 km. Using the grid-based algorithm, there is no consensus on assumed height as related to data fitting. A thin shell height in the range 350-500 km can be a reasonable compromise between data fitting and peak height of the ionosphere.
基金This wor is supported by NKBRSF G1999075406the National Natural Science FOundation of China under gran No. 19725312 and No.
文摘A brief description of the NAO coude echelle spectrograph mounted on the 2.16 m telescope at Xinglong station is given. This echelle spectrograph is located at the coudé focus with a prism cross disperser. The echelle image covers the spectral region from 330 to 1100 nm displayed in 80 spectral orders in one exposure through two light beams. With a slit height of 2mm, spectral orders are separated by 15 to 23 pixels in blue region and by 7 to 19 pixels in red region. Alternatively, two additional resolution modes corresponding to different focal length cameras with resolving power R 16000, 170 000 in the blue beam and R = 13000, 170 000 in the red beam could be provided by this spectrograph. The bias, dark, wavelength calibration, flat field and science exposure are described in details. The limiting magnitude for 1 hour exposure with an S/N ratio of 100 scales to V = 9.5 in the red path and to V = 7.2 in the blue path.
基金supported by the National Nature Science Foundation of China (Grant No.61862038)Gansu Province Science and Technology Program-Innovation Fund for Small and Medium-sized Enterprises (21CX6JA150)+1 种基金the Lanzhou Talent Innovation and Entrepreneurship Technology Plan Project (2021-RC-40)the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorithm to optimize the coverage of nodes and designed an energy-efficient node coverage optimization method.In the coverage optimization,the coverage rate and the number of working nodes are considered comprehensively,and the fitness value calculation is improved.The experimental results reveal that the modified ABC algorithm has better coverage optimization performance than the original ABC algorithm,genetic algorithm(GA),and particle swarm optimization(PSO)algorithm.