A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model i...A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.展开更多
To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is...To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.展开更多
本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,versi...本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,version2.0)。在经纬网格坐标系下,新的动力框架与LICOM2.0原有的动力框架模拟结果完全一致。基于新的动力框架,海洋模式可采用能够准确描述北冰洋地形的三极网格,克服了LICOM2.0经纬网格版本必须将北极点处理为孤岛的缺陷,从而显著改进了模式对于北冰洋环流和北大西洋经圈翻转流函数(AMOC)的模拟能力。此外,引进三极网格还可以避免模式网格距随纬度增加而急剧减小带来的计算不稳定,在LICOM2.0的三极网格版本中,模式不需要采用任何空间滤波方案仍然能够保证计算的稳定性,从而与LICOM2.0的经纬网格版本相比,极大地提高了模式的并行效率,这一点在当水平分辨率提高到0.1度时表现得尤为明显,海洋模式的并行加速比可以从经纬网格版本的5.8左右提高到三极网格版本的15.0左右。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.50909065 and 51109039)the Major State Basic Research Program of China(973 Program,Grant No.2012CB417002)
文摘A two-dimensional coastal ocean model based on unstructured C-grid is built, in which the momentum equation is discretized on the faces of each cell, and the continuity equation is discretized on the cell. The model is discretized by semi-implicit finite volume method, in that the free surface is semi-implicit and the bottom friction is implicit, thereby removing stability limitations associated with the surface gravity wave and friction. The remaining terms in the momentum equations are discretized explicitly by integral finite volume method and second-order Adams-Bashforth method. Tidal flow in the polar quadrant with known analytic solution is employed to test the proposed model. Finally, the performance of the present model to simulate tidal flow in a geometrically complex domain is examined by simulation of tidal currents in the Pearl River Estuary.
基金This study is supported by the National Natural Sci-ence Foundation of China under contract No.40136010the Major State Basic Research Program of China under contract No.G1999043808the Youth Fund of National“863”Project of China under contract No.2002AA639350.
文摘To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mean zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current,the North Equatorial Countercurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current.From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.
文摘本文发展了一个可以适用于任意水平正交曲线坐标系的海洋模式动力框架,并将其应用于中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM2.0(LASG/IAP Climate system Ocean Model,version2.0)。在经纬网格坐标系下,新的动力框架与LICOM2.0原有的动力框架模拟结果完全一致。基于新的动力框架,海洋模式可采用能够准确描述北冰洋地形的三极网格,克服了LICOM2.0经纬网格版本必须将北极点处理为孤岛的缺陷,从而显著改进了模式对于北冰洋环流和北大西洋经圈翻转流函数(AMOC)的模拟能力。此外,引进三极网格还可以避免模式网格距随纬度增加而急剧减小带来的计算不稳定,在LICOM2.0的三极网格版本中,模式不需要采用任何空间滤波方案仍然能够保证计算的稳定性,从而与LICOM2.0的经纬网格版本相比,极大地提高了模式的并行效率,这一点在当水平分辨率提高到0.1度时表现得尤为明显,海洋模式的并行加速比可以从经纬网格版本的5.8左右提高到三极网格版本的15.0左右。