Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice as...Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.展开更多
The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were deve...The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were developed in this paper to assess present and near-term ocean health based on ecosystem services. Results of the case study in the Laizhou Bay of China showed that the index score of ocean health was 0.785 6 out of 1.0 at present and was expected to range from 0.555 1 to 0.804 1 in the near-term future depending on different intensities of artificial regulation of negative pressures. Specifically, the results of ocean health at present mainly indicated that cultural services and provisioning services performed essentially perfectly while supporting services and regulating services functioned less well. It can be concluded that this nearshore ecosystem would partially lose supporting and regulating services in the near-term future if the increasing pressures were not wellregulated but that all of these categories of ecosystem services could be slightly improved if the negative pressures were fully controlled. Additionally, it is recommended that publicity and education on ecosystem services especially on cultural services and regulating services should be further strengthened. The analytical process and resulting quantification provide flexible tools to guide future development of regulations so as to facilitate ecosystem-based management in the coastal zone.展开更多
The role of the World Ocean in Global Climate Change is considered from two points of view: 1) heat energy accumulation and distribution in the ocean and its discharge into the atmosphere as purely physical processes;...The role of the World Ocean in Global Climate Change is considered from two points of view: 1) heat energy accumulation and distribution in the ocean and its discharge into the atmosphere as purely physical processes;2) participation of living matter in the ocean in these processes. The oceanic organic matter, especially plankton and different organic compounds, absorbs solar energy and changes water transparency, controlling thickness of layers and amount of the energy accumulated. Having ability to react not only to fluctuations of solar heat energy supply, but also to extra weak fluctuations of electromagnetic and magnetic fields of terrestrial and extraterrestrial origin, phytoplankton and other organic matter should be considered as active forcing of global climate and ocean ecosystem fluctuations observed on different scales. Several mechanisms of solar activity effects on global climate-ocean ecosystem interactions are discussed.展开更多
亚洲沙尘是全球沙尘的重要组成部分,其环境效应已得到广泛关注,但至今对亚洲沙尘输送/沉降—海洋生态系统响应—辐射活性气体海气交换—间接气候效应这一过程的认识却是非常初步的。亚洲沙尘存在3个主要源区,对其排放强度的认识仍存在...亚洲沙尘是全球沙尘的重要组成部分,其环境效应已得到广泛关注,但至今对亚洲沙尘输送/沉降—海洋生态系统响应—辐射活性气体海气交换—间接气候效应这一过程的认识却是非常初步的。亚洲沙尘存在3个主要源区,对其排放强度的认识仍存在较大的不确定性。亚洲沙尘可以通过长距离输送而影响到广大的北太平洋,其传输路径和影响范围决定于沙尘的来源、粒子谱分布与大气环流特征等因素。沙尘沉降是海洋营养物质和污染物质的来源之一,但沉降通量的估算结果仍有待进一步验证,而对海洋生态系统的作用机制及其反馈还缺乏足够的了解。论文在综述国内外相关研究的基础上,提出了"亚洲沙尘与海洋生态系统"(Asian Dust and Ocean EcoSystem,ADOES)研究计划的科学目标和主要研究内容。展开更多
水生生态系统 ,特别是海洋无疑是大气 CO2 的一个巨大的汇。海洋对大气 CO2 的汇以及大气圈和海洋之间碳的变换量在很大程度上取决于混合层碳酸盐化学、水中溶解碳的平流传输、CO2 通过空气——海水界面的扩散、海洋生物生产和所产生的...水生生态系统 ,特别是海洋无疑是大气 CO2 的一个巨大的汇。海洋对大气 CO2 的汇以及大气圈和海洋之间碳的变换量在很大程度上取决于混合层碳酸盐化学、水中溶解碳的平流传输、CO2 通过空气——海水界面的扩散、海洋生物生产和所产生的有机碳化合物的沉降等 ,现在已建立和发展了多种海洋碳子模型以对 CO2 的汇进行估测。根据国内外研究资料 ,综述了水生生态系统碳循环过程及“生物泵”作用机制等方面的研究进展 ;介绍了两大类主要的海洋碳子模型 :厢式模型和普通环流模型 ,采用这些模型对海洋碳汇的估算约为 1 .2~ 2 .4 Gt C/a;分析了湖泊、河流等对大气 CO2 汇的特点及向海洋的转移 ,并对影响水体生态系统碳循环和大气 CO2展开更多
基金supported by North Pacific Research Board(NPRB) grant 607(paper contribution number 202)NSF grant ARC-0652838+1 种基金DOE/EPSCoR grant DE-FG02-08ER46502.This is GLERL Contribution No.1499 and DOE/EPS-CoRInternational Arctic Research Center,University of Alaska Fairbanks supported this study through the JAMSTEC-IARC Research Agreement.
文摘Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.
基金The Public Science and Technology Research Funds Projects of Ocean in China under contract Nos 201005008 and201005009the National Natural Science Foundation of China under contract No.41206112
文摘The ecosystem-based management of nearshore waters requires integrated assessment of ocean health and scientific guidance on artificial regulations to promote sustainable development. Quantitative approaches were developed in this paper to assess present and near-term ocean health based on ecosystem services. Results of the case study in the Laizhou Bay of China showed that the index score of ocean health was 0.785 6 out of 1.0 at present and was expected to range from 0.555 1 to 0.804 1 in the near-term future depending on different intensities of artificial regulation of negative pressures. Specifically, the results of ocean health at present mainly indicated that cultural services and provisioning services performed essentially perfectly while supporting services and regulating services functioned less well. It can be concluded that this nearshore ecosystem would partially lose supporting and regulating services in the near-term future if the increasing pressures were not wellregulated but that all of these categories of ecosystem services could be slightly improved if the negative pressures were fully controlled. Additionally, it is recommended that publicity and education on ecosystem services especially on cultural services and regulating services should be further strengthened. The analytical process and resulting quantification provide flexible tools to guide future development of regulations so as to facilitate ecosystem-based management in the coastal zone.
文摘The role of the World Ocean in Global Climate Change is considered from two points of view: 1) heat energy accumulation and distribution in the ocean and its discharge into the atmosphere as purely physical processes;2) participation of living matter in the ocean in these processes. The oceanic organic matter, especially plankton and different organic compounds, absorbs solar energy and changes water transparency, controlling thickness of layers and amount of the energy accumulated. Having ability to react not only to fluctuations of solar heat energy supply, but also to extra weak fluctuations of electromagnetic and magnetic fields of terrestrial and extraterrestrial origin, phytoplankton and other organic matter should be considered as active forcing of global climate and ocean ecosystem fluctuations observed on different scales. Several mechanisms of solar activity effects on global climate-ocean ecosystem interactions are discussed.
文摘亚洲沙尘是全球沙尘的重要组成部分,其环境效应已得到广泛关注,但至今对亚洲沙尘输送/沉降—海洋生态系统响应—辐射活性气体海气交换—间接气候效应这一过程的认识却是非常初步的。亚洲沙尘存在3个主要源区,对其排放强度的认识仍存在较大的不确定性。亚洲沙尘可以通过长距离输送而影响到广大的北太平洋,其传输路径和影响范围决定于沙尘的来源、粒子谱分布与大气环流特征等因素。沙尘沉降是海洋营养物质和污染物质的来源之一,但沉降通量的估算结果仍有待进一步验证,而对海洋生态系统的作用机制及其反馈还缺乏足够的了解。论文在综述国内外相关研究的基础上,提出了"亚洲沙尘与海洋生态系统"(Asian Dust and Ocean EcoSystem,ADOES)研究计划的科学目标和主要研究内容。
文摘水生生态系统 ,特别是海洋无疑是大气 CO2 的一个巨大的汇。海洋对大气 CO2 的汇以及大气圈和海洋之间碳的变换量在很大程度上取决于混合层碳酸盐化学、水中溶解碳的平流传输、CO2 通过空气——海水界面的扩散、海洋生物生产和所产生的有机碳化合物的沉降等 ,现在已建立和发展了多种海洋碳子模型以对 CO2 的汇进行估测。根据国内外研究资料 ,综述了水生生态系统碳循环过程及“生物泵”作用机制等方面的研究进展 ;介绍了两大类主要的海洋碳子模型 :厢式模型和普通环流模型 ,采用这些模型对海洋碳汇的估算约为 1 .2~ 2 .4 Gt C/a;分析了湖泊、河流等对大气 CO2 汇的特点及向海洋的转移 ,并对影响水体生态系统碳循环和大气 CO2