We have developed a novel target set to scale our Underwater Laser-illuminated Range-gated Imaging (ULRI) video system in a 3 m-tank with turbid water (attenuation coefficient 1.0 m -1). As light speed in water is 22....We have developed a novel target set to scale our Underwater Laser-illuminated Range-gated Imaging (ULRI) video system in a 3 m-tank with turbid water (attenuation coefficient 1.0 m -1). As light speed in water is 22.5 cm ns -1, the target set consists of a series of 3-bar targets at 22.5 cm intervals along the laser illumination direction, with the targets separated vertically. As a result, a sequence of good gated images, in steps of 1 ns delay, is presented, which is a revelation of the ‘sliced-view’ phenomenon for ns-level range-gating in such a limited water body. The Depth of Gating (DOG) and DOG-profile of the URLI system are measured for the first time, which can be used for evaluating gating-performance efficiently.展开更多
The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from Universi...The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.展开更多
The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters....The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.展开更多
To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) ...To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) were evaluated over the East China Seas(ECS) using MERIS data. The spectral remote sensing reflectance R_(rs)(λ), aerosol optical thickness(AOT), and ?ngstr?m exponent(α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R_(rs), AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R_(rs)(λ) showed a mean percentage difference(MPD) of 9%–13% in the 490–560 nm spectral range, and significant overestimation was observed at 413 nm(MPD>72%). The AOTs were overestimated(MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm(MPD=41%) but not by the NASA algorithm(MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo(SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.展开更多
Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o...Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>展开更多
文摘We have developed a novel target set to scale our Underwater Laser-illuminated Range-gated Imaging (ULRI) video system in a 3 m-tank with turbid water (attenuation coefficient 1.0 m -1). As light speed in water is 22.5 cm ns -1, the target set consists of a series of 3-bar targets at 22.5 cm intervals along the laser illumination direction, with the targets separated vertically. As a result, a sequence of good gated images, in steps of 1 ns delay, is presented, which is a revelation of the ‘sliced-view’ phenomenon for ns-level range-gating in such a limited water body. The Depth of Gating (DOG) and DOG-profile of the URLI system are measured for the first time, which can be used for evaluating gating-performance efficiently.
基金support to the University of South Florida(Grants No.0014-96-1-5013 and No.0014-97-1-0006)cooperation between Ocean University of China and University of South Florida.
文摘The advantages of using unmanned underwater vehicles in coastal ocean studies are emphasized. Two types of representative vehicles, remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV) from University of South Florida, are discussed. Two individual modular sensor packages designed and tested for these platforms and field measurement results are also presented. The bottom classification and albedo package, BCAP, provides fast and accurate estimates of bottom albedos, along with other parameters such as in-water remote sensing reflectance. The real-time ocean bottom optical topographer, ROBOT, reveals high-resolution 3-dimentional bottom topography for target identification. Field data and results from recent Coastal Benthic Optical Properties field campaign, 1999 and 2000, are presented. Advantages and limitations of these vehicles and applications of modular sensor packages are compared and discussed.
基金Supported by the National Natural Science Foundation of China,NSFC(Nos.41371346,41271375)the Doctoral Fund of Ministry of Education of China(No.20120076110009)
文摘The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration(SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra R_(rs)(λ) after atmospheric correction; 2) an estimation of R_(rs)(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from R_(rs)(λ). Six different models for radiometric R_(rs)(λ) determination and 28 models for SSC versus R_(rs)(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.
基金Supported by the State Key Program of National Natural Science Foundation of China(No.60638020)the State Scholarship Fund of the China Scholarship Council(CSC)+1 种基金the National Natural Science Foundation of China(Nos.41321004,41276028,41206006,41306192,41306035)the Natural Science Foundation of Zhejiang Province(No.LY15D060001)
文摘To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction(AC) algorithms(ESA MEGS 7.4.1 and NASA Sea DAS 6.1) were evaluated over the East China Seas(ECS) using MERIS data. The spectral remote sensing reflectance R_(rs)(λ), aerosol optical thickness(AOT), and ?ngstr?m exponent(α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R_(rs), AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R_(rs)(λ) showed a mean percentage difference(MPD) of 9%–13% in the 490–560 nm spectral range, and significant overestimation was observed at 413 nm(MPD>72%). The AOTs were overestimated(MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm(MPD=41%) but not by the NASA algorithm(MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo(SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.
文摘Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>