Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applicat...In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applications in lasing3, sensing4and nonlinear photonics5. A conventional strategy to harness the properties of BICs involves breaking the symmetry of resonators in a uniform lattice, allowing uncoupled modes to interact with free space that opens a leaky channel in the form of socalled (quasi) q BIC6modes.展开更多
Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime...Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state for the obser- vation of Rydberg states in sodium vapour. The broadening and shift of the sodium 3S- 11D transition pertur...We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state for the obser- vation of Rydberg states in sodium vapour. The broadening and shift of the sodium 3S- 11D transition perturbed by argon are investigated. This technique can achieve Doppler-free resolution of narrow spectral structures of Rydberg levels if lasers with narrow bandwidths are employed.展开更多
The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field mode...The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.展开更多
The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-fligh...The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-flight mass spectrometry. Compared with the original band 00^0 (at 313.8 nm) of the S1 ← So transition of the 1FN monomer, a red-shifted band was observed in the 1FN dimer spectrum at about 315 nm with a relatively large linewidth, nearly 2 nm. Based on the consideration of inductive effect and ab initio calculations, this red-shifted band is assigned to the first electronic excited transition of the 1FN dimer. A possible geometric structure of the 1FN dimer is also obtained with calculations that the two 1FN molecules are combined through two hydrogen bonds which are formed between the hydrogen atom of a molecule and the fluorine atom of a neighbouring molecule. A time-dependent calculation was also carried out and the results are consistent with the experimental data.展开更多
In this paper, we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses...In this paper, we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape). The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth. Our results demonstrate that, the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field, and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.展开更多
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresona...A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two- photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2-~l)-three-photon absorption and (2q-1)-resonant multiphoton ionization.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Tunable coherent extreme ultraviolet radiation has been generated in CO by two-photon resonant third harmonic generation via the A^(1) II(v'=4)←X^(1)Σ+(v"=0)transition.The third nharmonic spectrum exhibits ...Tunable coherent extreme ultraviolet radiation has been generated in CO by two-photon resonant third harmonic generation via the A^(1) II(v'=4)←X^(1)Σ+(v"=0)transition.The third nharmonic spectrum exhibits resolved and improved rotational lines due to the expansion cooling of the molecular beam.The saturation and the phase-matching of the nonlinear process are also discussed.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s...Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.展开更多
Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sens...Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.展开更多
In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resi...In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.展开更多
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency...Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.展开更多
The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are ...The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.展开更多
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
文摘In photonics, the quest for high-quality (high Q) resonances driven by the physics of bound states in the continuum (BIC)1,2has motivated researchers to explore innovative avenues for realizing groundbreaking applications in lasing3, sensing4and nonlinear photonics5. A conventional strategy to harness the properties of BICs involves breaking the symmetry of resonators in a uniform lattice, allowing uncoupled modes to interact with free space that opens a leaky channel in the form of socalled (quasi) q BIC6modes.
基金supported by the Federal Program'Priority 2030'and NSFC(Project 62350610272)A.K.Samusev acknowledges Deutsche Forschungsgemeinschaft-project No.529710370。
文摘Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
基金Supported by the National Natural Science Foundation of China under Grant No.19874080。
文摘We apply two-photon resonant nondegenerate four-wave mixing with a resonant intermediate state for the obser- vation of Rydberg states in sodium vapour. The broadening and shift of the sodium 3S- 11D transition perturbed by argon are investigated. This technique can achieve Doppler-free resolution of narrow spectral structures of Rydberg levels if lasers with narrow bandwidths are employed.
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03090400 and 2019YFE03030004)National Natural Science Foundation of China(Nos.12375222 and 11775154)National Key R&D Program of China(Nos.2017YFE0301203 and 2017YFE0301101)。
文摘The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear.
基金supported by the Doctoral Special Fund of Qufu Normal University of China
文摘The one-colour resonant two-photon ionization (R2PI) spectrum of the 1-fluoronaphthalene (1FN) dimer has been studied in the wavelength range of 304 to 322 nm by using a supersonic molecular beam and time-of-flight mass spectrometry. Compared with the original band 00^0 (at 313.8 nm) of the S1 ← So transition of the 1FN monomer, a red-shifted band was observed in the 1FN dimer spectrum at about 315 nm with a relatively large linewidth, nearly 2 nm. Based on the consideration of inductive effect and ab initio calculations, this red-shifted band is assigned to the first electronic excited transition of the 1FN dimer. A possible geometric structure of the 1FN dimer is also obtained with calculations that the two 1FN molecules are combined through two hydrogen bonds which are formed between the hydrogen atom of a molecule and the fluorine atom of a neighbouring molecule. A time-dependent calculation was also carried out and the results are consistent with the experimental data.
基金Project supported by Shanghai Leading Academic Discipline Project (Grant No. B408)National Key Program for Basic Research of China (Grant Nos. 2006CB806006 and 2006CB921105)+1 种基金Ministry of Education of China (Grant No. 30800)Shanghai Municipal Science and Technology Commission (Grant Nos. 07DZ22025,09142200501 and 09ZR1409300)
文摘In this paper, we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and π phase step-function shape). The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth. Our results demonstrate that, the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field, and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
基金Project partly supported by the Shanghai Leading Academic Discipline Project (Grant No.B408)the Science Foundation of the Ministry of Education of China (Grant No.30800)+1 种基金the National Natural Science Fundation of China (Grant No.11004060)the Shanghai Municipal Science and Technology Commission (Grant Nos.10XD1401800,09142200501,09ZR1409300,09JC1404700,and 10JC1404500)
文摘A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two- photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2-~l)-three-photon absorption and (2q-1)-resonant multiphoton ionization.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
基金Supported by the High Technology Program of Lasers(863-410)the National Natural Science Foundation of China under Grant No.19584001.
文摘Tunable coherent extreme ultraviolet radiation has been generated in CO by two-photon resonant third harmonic generation via the A^(1) II(v'=4)←X^(1)Σ+(v"=0)transition.The third nharmonic spectrum exhibits resolved and improved rotational lines due to the expansion cooling of the molecular beam.The saturation and the phase-matching of the nonlinear process are also discussed.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
文摘Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
文摘Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.
基金The National Natural Science Youth Foundation of China(No.51507032)the Natural Science Foundation of Jiangsu Province(No.BK20150617)the Fundamental Research Funds for the Central Universities
文摘In order to address the issues that the magnetic coupled resonant wireless power transfer (MCR-WPT) system is sensitive to the resonant frequency and that transmission power is difficult to control with the non-resistive load in the MCR-WPT, a single-side regulation scheme for frequency and transmission power online is proposed, which is based on the inherent constraint relationships the among system parameters in the primary side. Thus, the communication between the primary side and the secondary side is avoided. First, the transfer models of resistance-capacitance load and resistance- inductance load are established, respectively. Next, the relationship between the input voltage phasor and the input current phasor is used to recognize the load property and value. Then, the coaxial rotation of the stepper motor and the rotating vacuum variable capacitor is conducted to unify resonant frequency both in the primary side and the secondary side. Finally, the regulations of both frequency and amplitude of input voltage are made to guarantee transmission power under a new resonant frequency point the same as the one when the only pure resistance part of load is accessed under the former resonant frequency point. Both simulation and experimental results indicate that the proposed regulation scheme can track remnant frequency and maintain transmission power constant.
文摘Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.
文摘The transitions of E0 ,E0 +A0, and E+ in dilute GaAs(1-x) Nx alloys with x = 0.10% ,0.22% ,0.36% ,and 0.62% are observed by micro-photoluminescence. Resonant Raman scattering results further confirm that they are from the intrinsic emissions in the studied dilute GaAsN alloys rather than some localized exciton emissions in the GaAsN alloys. The results show that the nitrogen-induced E E+ and E0 + A0 transitions in GaAsN alloys intersect at a nitrogen content of about 0.16%. It is demonstrated that a small amount of isoelectronic doping combined with micro-photoluminescence allows direct observation of above band gap transitions that are not usually accessible in photoluminescence.