Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
变压器有载分接开关(on-load top changer,OLTC)的主要故障类型是机械故障,现有大多数研究仅诊断切换开关故障,难以辨识影响换档全过程的传动机构故障。为准确诊断切换开关与传动机构故障,该文提出一种基于换档全过程振动强度的OLTC机...变压器有载分接开关(on-load top changer,OLTC)的主要故障类型是机械故障,现有大多数研究仅诊断切换开关故障,难以辨识影响换档全过程的传动机构故障。为准确诊断切换开关与传动机构故障,该文提出一种基于换档全过程振动强度的OLTC机械故障诊断方法。首先,将多通道切换开关振动爆发数据转换为时域波形图输入改进的卷积神经网络(convolutional neural network,CNN),以获取池化层特征。然后,提出换档全过程振动强度特征,将换档全过程振动信号划分为多个区间,统计各区间中幅值超过阈值的点数,以表征各时间段平均振动强度。最后,提出一种新的特征处理方法改变以上两种特征的相对大小,并融合两种特征训练分类器诊断机械故障类型。实例分析表明:相比于现有OLTC机械故障诊断方法,所提方法能有效辨识传动机构故障,进一步提升对切换开关故障的诊断精度,具有较强的鲁棒性与泛用性,可为OLTC机械故障诊断研究提供新的思路。展开更多
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s...为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。展开更多
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
文摘变压器有载分接开关(on-load top changer,OLTC)的主要故障类型是机械故障,现有大多数研究仅诊断切换开关故障,难以辨识影响换档全过程的传动机构故障。为准确诊断切换开关与传动机构故障,该文提出一种基于换档全过程振动强度的OLTC机械故障诊断方法。首先,将多通道切换开关振动爆发数据转换为时域波形图输入改进的卷积神经网络(convolutional neural network,CNN),以获取池化层特征。然后,提出换档全过程振动强度特征,将换档全过程振动信号划分为多个区间,统计各区间中幅值超过阈值的点数,以表征各时间段平均振动强度。最后,提出一种新的特征处理方法改变以上两种特征的相对大小,并融合两种特征训练分类器诊断机械故障类型。实例分析表明:相比于现有OLTC机械故障诊断方法,所提方法能有效辨识传动机构故障,进一步提升对切换开关故障的诊断精度,具有较强的鲁棒性与泛用性,可为OLTC机械故障诊断研究提供新的思路。
文摘为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。