Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be...Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.展开更多
The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients,...The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.展开更多
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a...The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.展开更多
The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through...The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.展开更多
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ...The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
To observe the chelation of GRP78 with lead (Pb) and its localization changes, astroglial ceils from Wistar rat brain were primarily cultured in medium witb acetate Pb. The processes were terminated at different tim...To observe the chelation of GRP78 with lead (Pb) and its localization changes, astroglial ceils from Wistar rat brain were primarily cultured in medium witb acetate Pb. The processes were terminated at different time points. The immunoprecipitation (IP) and Western blotting were used for GRP78 purification and expression and the Pb concentration was determined by employing atomic absorption spectrophotometry (AAS). The localization change of GRP78 was observed with colloid gold immunoelectron microscopy. The results showed that the expression of GRP78 was increased significantly in the cells treated with 1.0 μmol/L acetate Pb for 24 h and peaked at 96-192 h (P〈0.01), and at the 12th day, the expression of GRP78 began to decrease but was still higher than normal (P〈0.05). Pb content started to increase when cells were treated by acetate Pb for 24 h, and the peak appeared at 8 day (P〈0.01), and then Pb content decreased gradually, but was still higher than normal (P〈0.05). GRP78 protein expression began to remarkably increase when it transferred from ER to the cytosol around the nuclei 24 h after treatment with Pb. It is concluded that GRP78 in astroglia could strongly chelate with Pb ions and it might be a target protein of Pb.展开更多
Iron is essential for all organisms including microbial,cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overloa...Iron is essential for all organisms including microbial,cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies.展开更多
The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn 2O 4 and the reaction mechanism were investigated by means of XRD,IR,TG-DTA, and SEM.The results show that at t...The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn 2O 4 and the reaction mechanism were investigated by means of XRD,IR,TG-DTA, and SEM.The results show that at the beginning lithium citrate and chelate compound of citric acid with manganese ions formed,and then with heating the esterification and condensation reactions occured between them and glycol.The products obtained are polymers in which metal cations are distributed homogeneously on atomic scale that ensure high reactivity to cations of Li + and Mn 2+.Firing the gel prepared by this process,the lattice diffusions of solid reactant ions caused by non-homogeneity of reactants are eliminated and avoided.At 400℃ phase-pure LiMn 2O 4 with nanometer scale crystallization having precise stoichiometry and perfect crystallization can be obtained.The model of chelate coordinate of double-molecule between citric acid and Mn 2+ in the gel network is proposed.It is important for explaining the dispersion state of Mn 2+ and the formation process of gel by this model.展开更多
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A...In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.展开更多
The influence of methionine supplementation on the efficacy of common antidotes to lead poisoning, calcium disodium ethylenediaminetetraacetate (CaNa_2EDTA) and D-penicillamine (DPA), was investigated in rats. The ani...The influence of methionine supplementation on the efficacy of common antidotes to lead poisoning, calcium disodium ethylenediaminetetraacetate (CaNa_2EDTA) and D-penicillamine (DPA), was investigated in rats. The animals were given lead acetate (0.1% in drinking water) for 12 weeks and thereafter treated with CaNa_2EDTA, DPA (0.3mmol/kg, intraperitoneally), DL-methionine (1.34 mmol/kg, intragastrically), or the combination of a chelating agent and methionine for 3 days. While chelating agents enhanced the urinary excretion of Pb, methionine increased the fecal excretion of Pb significantly. Treatment with the combination of a chelating agent and methionine did not potentiate the effect of each antidote. However, methionine supplementation increased the efficacy of both chelating agents in reducing the hepatic and renal Pb burden but not the blood Pb level. The Pb-induced inhibition of blood δ-aminolevulinic acid dehydratase activity and the increase in urinary excretion of δ-aminolevulinic acid were reversed to a certain extent by CaNa_2EDTA, DPA, and methionine but the combination did not improve their individual performances. The beneficial effects of methionine may be attributed to its ability to increase the bioavailability of glutathione (GSH), useful in chelating Pb and counteracting the toxic effects, as evidenced by restoration of the Pb-induced decrease in hepatic GSH level by treatment with methionine. Methionine may be useful as a supportive therapy in chelation of Pb. (c)1989 Academic Press. Inc.展开更多
The structure and electronic properties of a series of biologically active dithiolethiones (1) have been calculated using semi-empirical. Multi-linear regression analysis suggests that there is a reasonable correlat...The structure and electronic properties of a series of biologically active dithiolethiones (1) have been calculated using semi-empirical. Multi-linear regression analysis suggests that there is a reasonable correlation between the experimental activity of the derivatives against chelation activity and calculated properties such as the HOMO energies, molar refractivity, dipole moments and experimental partition coefficient. From the derived QSAR equations the 3-Methylthio-4p-Tolyle-1,2-Dithiolylium accompanying ion (CH3SO4) and 4-para-tolyl-1,2-dithiole-3-thione (2b and 2) are predicted to show the highest activity against chelation activity, while 3-Methylthio-5p-methoxy phenyl-1,2-Dithiolylium accompanying ion (I-) (3a) is predicted to be the least active in line with the experimental results.展开更多
This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instan...This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.展开更多
Objective To synthesize some new a-mercapto-β-substituted aryl acrylic acids, characterize them and investigate their in vitro cadmium chelating ability. Methods Six α-mercapto-β-substituted aryl acrylic acids were...Objective To synthesize some new a-mercapto-β-substituted aryl acrylic acids, characterize them and investigate their in vitro cadmium chelating ability. Methods Six α-mercapto-β-substituted aryl acrylic acids were prepared by the alkaline hydrolysis of 5- (aryl methylene) rhodanines, obtained from the condensation of substituted aldehydes and rhodanine following the reported procedure. The new compounds were characterized by elemental analysis, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. The liver and kidney from cadmium chloride pre-administered rats were homogenized and their nuclear mitochondrial fraction (NMF) and supernatant cytosol fraction (SCF) were separated. A measured volume of each fraction was dialyzed separately using 'dialysis sack' against buffered-KCl medium containing a compound in the final concentration of 1×10-3 mol/L for 3 h at 37℃. The whole content of 'sack' was subjected to cadmium estimation following digestion with cone. Nitric acid was detected using flame atomic absorption spectrometer. Results The in vitro screening showed that α-mercapto-β-(p-methoxyphenyl) acrylic acid (compound 2) andα-mercapto-β-(m-methoxy, p-hydroxyphenyl) acrylic acid (compound 4) were more effective than α-mercapto-β-thienyl acrylic acid (compound 1) and a-mercapto-β-(p-dimethylaminophenyl) acrylic acid (compound 3) in mobilizing cadmium as their dialyzable chelates. The presence of a methoxy group on the phenyl moiety (compounds 2 and 4) increases the metal chelating ability of mercapto acrylic acids. Conclusions Compounds 2 and 4 seem to have accessibility to the cellular system and capability of chelating-out the intracellularly bound cadmium.展开更多
Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition sy...Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. Unfortunately this approach does not work with Arabic text. In this paper we describe a new approach to segment Arabic text imagery at a word level, without analyzing individual characters. This approach avoids the problem of individual characters segmentation, and can overcome local errors in character recognition.展开更多
A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding...A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.展开更多
[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,conc...[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,concentration of polypeptide solution and volume ratio of polypeptide solution to FeCl_2 solution were selected as influencing factors with Fe(II)chelation rate as the indicator for Box-Behnken central composite experimental design with three factors and three levels.The effects of three factors on the response value were analyzed by response surface methodology.[Results]The optimized chelation process for complex microelement iron supplement derived from pig blood by response surface methodology was as follows:pH 5.40,polypeptide solution concentration 2.27%,volume ratio of polypeptide solution to FeCl_2 solution 2.16∶1.Under this condition,the predictive Fe(II)chelation rate of iron supplement was 79.37%,while the actual value was 79.41%.[Conclusions]The optimized process may provide new thoughts for the development and utilization of complex microelement iron supplement derived from pig blood.展开更多
Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(...Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.展开更多
基金This work is financially supported by National Natural Science Foundation of China(NSFC-No.52173257 and 52372064).
文摘Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
文摘The proportion of elderly patients in intensive care is increasing, and a significant proportion of them require mechanical ventilation. How to implement safe and effective mechanical ventilation for elderly patients, and when appropriate off-line is an important issue in the field of critical care medicine. Appropriate sedation can improve patient outcomes, but excessive sedation may lead to prolonged mechanical ventilation and increase the risk of complications. Elderly patients should be closely monitored and evaluated on an individual basis while offline, and the sedation regimen should be dynamically adjusted. This requires the healthcare team to consider the patient’s sedation needs, disease status, and pharmacodynamics and pharmacokinetics of the drug to arrive at the best strategy. Although the current research has provided valuable insights and strategies for sedation and off-line management, there are still many problems to be further explored and solved.
文摘The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions.
基金Projects (2011BAE22B01, 2011BAE22B06) supported by the National Key Technologies R&D Program During the 12th Five-Year Plan Period of ChinaProject (2010NC018) supported by the Innovation Fund of Inner Mongolia University of Science and Technology, China
文摘The effects of on-line solution, off-line solution and aging heat treatment on the microstructure and hardness of the die-cast AZ91D alloys were investigated. Brinell hardness of die-cast AZ91D alloy increases through on-line solution and off-line aging treatment but decreases after off-line solution treatment. By X-ray diffractometry, optical microscopy, differential thermal analysis, scanning electron microscopy and X-ray energy dispersive spectroscopy, it is found that the microstructures of the die-cast AZ91D magnesium alloy before and after on-line solution and off-line aging are similar, consisting of α-Mg and β-Al12Mg17. The precipitation of Al element is prevented by on-line solution so that the effect of solid solution strengthening is enhanced. The β-Al12Mg17 phases precipitate from supersaturated Mg solid solution after off-line aging treatment, and lead to microstructure refinement of AZ91D alloy, so the effect of precipitation hardening is enhanced. The β-Al12Mg17 phases dissolve in the substructure after off-line solution treatment, which leads to that the grain boundary strengthening phase is reduced significantly and the hardness of die cast AZ91D is reduced.
文摘The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
基金supported by a grant from the National Natural Sciences Foundation of China(No.39970651)
文摘To observe the chelation of GRP78 with lead (Pb) and its localization changes, astroglial ceils from Wistar rat brain were primarily cultured in medium witb acetate Pb. The processes were terminated at different time points. The immunoprecipitation (IP) and Western blotting were used for GRP78 purification and expression and the Pb concentration was determined by employing atomic absorption spectrophotometry (AAS). The localization change of GRP78 was observed with colloid gold immunoelectron microscopy. The results showed that the expression of GRP78 was increased significantly in the cells treated with 1.0 μmol/L acetate Pb for 24 h and peaked at 96-192 h (P〈0.01), and at the 12th day, the expression of GRP78 began to decrease but was still higher than normal (P〈0.05). Pb content started to increase when cells were treated by acetate Pb for 24 h, and the peak appeared at 8 day (P〈0.01), and then Pb content decreased gradually, but was still higher than normal (P〈0.05). GRP78 protein expression began to remarkably increase when it transferred from ER to the cytosol around the nuclei 24 h after treatment with Pb. It is concluded that GRP78 in astroglia could strongly chelate with Pb ions and it might be a target protein of Pb.
文摘Iron is essential for all organisms including microbial,cancer and human cells. More than a quarter of the human population is affected by abnormalities of iron metabolism, mainly from iron deficiency and iron overload. Iron also plays an important role in free radical pathology and oxidative damage which is observed in almost all major diseases, cancer and ageing. New developments include the complete treatment of iron overload and reduction of morbidity and mortality in thalassaemia using deferiprone and selected deferiprone/deferoxamine combinations and also the use of the maltol iron complex in the treatment of iron deficiency anaemia. There is also a prospect of using deferiprone as a universal antioxidant in non iron overloaded diseases such as neurodegenerative, cardiovascular, renal, infectious diseases and cancer. New regulatory molecules of iron metabolism such as endogenous and dietary chelating molecules, hepcidin, mitochondrial ferritin and their role in health and disease is under evaluation. Similarly, new mechanisms of iron deposition, removal, distribution and toxicity have been identified using new techniques such as magnetic resonance imaging increasing our understanding of iron metabolic processes and the targeted treatment of related diseases. The uniform distribution of iron in iron overload between organs and within each organ is no longer valid. Several other controversies such as the toxicity impact of non transferrin bound iron vs injected iron, the excess levels of iron in tissues causing toxicity and the role of chelation on iron absorption need further investigation. Commercial interests of pharmaceutical companies and connections to leading journals are playing a crucial role in shaping worldwide medical opinion on drug sales and use but also patients' therapeutic outcome and safety. Major controversies include the selection criteria and risk/benefit assessment in the use of deferasirox in thalassaemia and more so in idiopathic haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies.
基金theNationalNaturalScienceFoundationofChina (No .5 9972 0 2 7)theNaturalScienceFoundationofHubeiProvince (No .2 0 0 2AB0 74) )
文摘The sol-gel process of citric acid chelating with metal cations for the synthesis of normal spinel LiMn 2O 4 and the reaction mechanism were investigated by means of XRD,IR,TG-DTA, and SEM.The results show that at the beginning lithium citrate and chelate compound of citric acid with manganese ions formed,and then with heating the esterification and condensation reactions occured between them and glycol.The products obtained are polymers in which metal cations are distributed homogeneously on atomic scale that ensure high reactivity to cations of Li + and Mn 2+.Firing the gel prepared by this process,the lattice diffusions of solid reactant ions caused by non-homogeneity of reactants are eliminated and avoided.At 400℃ phase-pure LiMn 2O 4 with nanometer scale crystallization having precise stoichiometry and perfect crystallization can be obtained.The model of chelate coordinate of double-molecule between citric acid and Mn 2+ in the gel network is proposed.It is important for explaining the dispersion state of Mn 2+ and the formation process of gel by this model.
基金the National Natural Science Foundation of China (Nos. 41075053 and 41275016)
文摘In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.
文摘The influence of methionine supplementation on the efficacy of common antidotes to lead poisoning, calcium disodium ethylenediaminetetraacetate (CaNa_2EDTA) and D-penicillamine (DPA), was investigated in rats. The animals were given lead acetate (0.1% in drinking water) for 12 weeks and thereafter treated with CaNa_2EDTA, DPA (0.3mmol/kg, intraperitoneally), DL-methionine (1.34 mmol/kg, intragastrically), or the combination of a chelating agent and methionine for 3 days. While chelating agents enhanced the urinary excretion of Pb, methionine increased the fecal excretion of Pb significantly. Treatment with the combination of a chelating agent and methionine did not potentiate the effect of each antidote. However, methionine supplementation increased the efficacy of both chelating agents in reducing the hepatic and renal Pb burden but not the blood Pb level. The Pb-induced inhibition of blood δ-aminolevulinic acid dehydratase activity and the increase in urinary excretion of δ-aminolevulinic acid were reversed to a certain extent by CaNa_2EDTA, DPA, and methionine but the combination did not improve their individual performances. The beneficial effects of methionine may be attributed to its ability to increase the bioavailability of glutathione (GSH), useful in chelating Pb and counteracting the toxic effects, as evidenced by restoration of the Pb-induced decrease in hepatic GSH level by treatment with methionine. Methionine may be useful as a supportive therapy in chelation of Pb. (c)1989 Academic Press. Inc.
文摘The structure and electronic properties of a series of biologically active dithiolethiones (1) have been calculated using semi-empirical. Multi-linear regression analysis suggests that there is a reasonable correlation between the experimental activity of the derivatives against chelation activity and calculated properties such as the HOMO energies, molar refractivity, dipole moments and experimental partition coefficient. From the derived QSAR equations the 3-Methylthio-4p-Tolyle-1,2-Dithiolylium accompanying ion (CH3SO4) and 4-para-tolyl-1,2-dithiole-3-thione (2b and 2) are predicted to show the highest activity against chelation activity, while 3-Methylthio-5p-methoxy phenyl-1,2-Dithiolylium accompanying ion (I-) (3a) is predicted to be the least active in line with the experimental results.
基金granted by the National Key R&D Program of China (2021YFD21001005)National Natural Science Foundation of China (31972102,32101980)+1 种基金Special key project of Chongqing technology innovation and application development (cstc2021jscx-cylhX0014)Chongqing Technology Innovation and Application Development Special Project (cstc2021jscx-tpyzxX0014)。
文摘This study aimed to characterize and identify calcium-chelating peptides from rabbit bone collagen and explore the underlying chelating mechanism.Collagen peptides and calcium were extracted from rabbit bone by instant ejection steam explosion(ICSE)combined with enzymatic hydrolysis,followed by chelation reaction to prepare rabbit bone peptide-calcium chelate(RBCP-Ca).The chelating sites were further analyzed by liquid chromatography-tandem mass(LC-MS/MS)spectrometry while the chelating mechanism and binding modes were investigated.The structural characterization revealed that RBCP successfully chelated with calcium ions.Furthermore,LC-MS/MS analysis indicated that the binding sites included both acidic amino acids(Asp and Glu)and basic amino acids(Lys and Arg),Interestingly,three binding modes,namely Inter-Linking,Loop-Linking and Mono-Linking were for the first time found,while Inter-Linking mode accounted for the highest proportion(75.1%),suggesting that chelation of calcium ions frequently occurred between two peptides.Overall,this study provides a theoretical basis for the elucidation of chelation mechanism of calcium-chelating peptides.
基金This research was supported by the Council of Science and Technology, U. P state government.
文摘Objective To synthesize some new a-mercapto-β-substituted aryl acrylic acids, characterize them and investigate their in vitro cadmium chelating ability. Methods Six α-mercapto-β-substituted aryl acrylic acids were prepared by the alkaline hydrolysis of 5- (aryl methylene) rhodanines, obtained from the condensation of substituted aldehydes and rhodanine following the reported procedure. The new compounds were characterized by elemental analysis, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy. The liver and kidney from cadmium chloride pre-administered rats were homogenized and their nuclear mitochondrial fraction (NMF) and supernatant cytosol fraction (SCF) were separated. A measured volume of each fraction was dialyzed separately using 'dialysis sack' against buffered-KCl medium containing a compound in the final concentration of 1×10-3 mol/L for 3 h at 37℃. The whole content of 'sack' was subjected to cadmium estimation following digestion with cone. Nitric acid was detected using flame atomic absorption spectrometer. Results The in vitro screening showed that α-mercapto-β-(p-methoxyphenyl) acrylic acid (compound 2) andα-mercapto-β-(m-methoxy, p-hydroxyphenyl) acrylic acid (compound 4) were more effective than α-mercapto-β-thienyl acrylic acid (compound 1) and a-mercapto-β-(p-dimethylaminophenyl) acrylic acid (compound 3) in mobilizing cadmium as their dialyzable chelates. The presence of a methoxy group on the phenyl moiety (compounds 2 and 4) increases the metal chelating ability of mercapto acrylic acids. Conclusions Compounds 2 and 4 seem to have accessibility to the cellular system and capability of chelating-out the intracellularly bound cadmium.
文摘Segmentation of cursive text has been one of the major problems in Arabic writing. The problem is the shape of the letter which is context sensitive, depending on it’s location within a word. Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. Unfortunately this approach does not work with Arabic text. In this paper we describe a new approach to segment Arabic text imagery at a word level, without analyzing individual characters. This approach avoids the problem of individual characters segmentation, and can overcome local errors in character recognition.
基金Funded by Anhui Provincial Natural Science Foundation of China(GFKJ2015B002)Quality Engineering Project of Anhui province(2014zy122)
文摘A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.
基金Supported by Youth Fund of National Natural Science Foundation of China(31801673)Talent Development Fund of Anhui Academy of Agricultural Sciences(17F1205)+2 种基金Youth Innovation Fund of President of Anhui Academy of Agricultural Sciences(17B1220)Team Building Project of Anhui Academy of Agricultural Sciences(18C1225)Youth Fund of Natural Science Foundation of Anhui Province(1808085QC94)
文摘[Objectives]This study aimed to optimize the chelation process for complex microelement iron supplement derived from pig blood by response surface methodology.[Methods]On the basis of single-factor test,p H value,concentration of polypeptide solution and volume ratio of polypeptide solution to FeCl_2 solution were selected as influencing factors with Fe(II)chelation rate as the indicator for Box-Behnken central composite experimental design with three factors and three levels.The effects of three factors on the response value were analyzed by response surface methodology.[Results]The optimized chelation process for complex microelement iron supplement derived from pig blood by response surface methodology was as follows:pH 5.40,polypeptide solution concentration 2.27%,volume ratio of polypeptide solution to FeCl_2 solution 2.16∶1.Under this condition,the predictive Fe(II)chelation rate of iron supplement was 79.37%,while the actual value was 79.41%.[Conclusions]The optimized process may provide new thoughts for the development and utilization of complex microelement iron supplement derived from pig blood.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U22A20140)the Independent Cultivation Program of Innovation Team of Ji'nan City(No.2019GXRC011)the National Natural Science Foundation of China(No.62001189)
文摘Although Zn metal has been regarded as the most promising anode for aqueous batteries,its practical application is still restricted by side reactions and dendrite growth.Herein,an in-situ solid electrolyte interphase(SEI)film formed on the interface of electrode/electrolyte during the plating/stripping of zinc anodes by introducing trace amounts of multidentate ligand sodium diethyldithiocarbamate(DDTC)additive into 1 M ZnSO_(4).The synergistic effect of in-situ solid electrolyte interphase forming and chelate effect endows Zn^(2+)with uniform and rapid interface-diffusion kinetics against dendrite growth and surface side reactions.As a result,the Zn anode in 1 M ZnSO_(4)+DDTC electrolytes displays an ultra-high coulombic efficiency of 99.5%and cycling stability(more than 2000 h),especially at high current density(more than 600 cycles at 40 mA cm^(-2)).Moreover,the Zn//MnO_(2)full cells in the ZnSO_(4)+DDTC electrolyte exhibit outstanding cyclic stability(with 98.6%capacity retention after 2000 cycles at 10 C).This electrode/electrolyte interfacial chemistry modulated strategy provides new insight into enhancing zinc anode stability for high-performance aqueous zinc batteries.