This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ...This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment.展开更多
As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should ...As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should have a new shape. Implementing the largest infrastructure projects and creating on this basis a modern transportation network will not only see a new reincarnation of traditional industrial centers, but also open wider opportunities for regional development.展开更多
The Songpan-Aba area, similar to those basins on the Yangtze block, following the rifting and separation of the Yangtze block, gradually developed into a passive marginal basin on a passive continent margin in Early P...The Songpan-Aba area, similar to those basins on the Yangtze block, following the rifting and separation of the Yangtze block, gradually developed into a passive marginal basin on a passive continent margin in Early Paleozoic, and later, with the Qinling-Qilian oceanic crust subduction and ocean closure, the Caledonides were formed and the foreland basin was superimposed upon. Being influenced by the Paleo-Tethyan extension, intra-continental rifting-margin basins were formed in Late Paleozoic. Following the formation of peripheral orogenic belt, the Upper Triassic again superimposed the foreland basin. The Mesozoic and Cenozoic overprinted the faulted basin, forming the Qinghai-Tibet Plateau domes. Hydrocarbon source rock in the Early Paleozoic passive basin, the Upper Paleozoic platform carbonates and the Triassic mudstones comprise the main source-reservoircap combination. Each layer of this area is at the advanced stage of diagenetic evolution, being entered the middle and late diagenetic stages, and anadiagenetic stage. Besides the highly matured Triassic and Permian in Zoige and Hongyuan, almost all the area is at the early stage of over maturatation, generating much methane. This area has the potential for oil and gas.展开更多
Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicat...Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study, and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type, which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin展开更多
Shale oil and gas plays in continental rift basins are complicated and have not been reported elsewhere.In the Luojia area of the Jiyang Depression,an evaluation workflow for shale oil and gas in this continental rift...Shale oil and gas plays in continental rift basins are complicated and have not been reported elsewhere.In the Luojia area of the Jiyang Depression,an evaluation workflow for shale oil and gas in this continental rift basin is proposed.Based on analysis of oil-and gas-related geological conditions,a favorable area of shale oil and gas can be identified,and a high-frequency sequence stratigraphic framework of the target area can be established,therefore,the spatiotemporal distribution of shale has been elucidated in the Luojia area.According to the rock texture,structure,composition and color,petrographic classification criteria for shale are determined,and well log data are used to demarcate,track and predict high-quality lithofacies.Based on geochemical analyses and physical simulations of hydrocarbon generation,abundance,types and maturity of organic matter are analyzed,furthermore,geochemical parameters criteria of hydrocarbon generation and the characteristics of oil and gas occurrence in shales can be determined.Storage space types,assemblages and evolution characteristics of shale reservoirs are studied through core observation,thin-section analysis,electron microscopy examination and fluorescence spectrometry.Combined with analysis of reservoir physical properties,the reservoir performance is evaluated.A saturation model is established based on core analysis,well-log interpretation and well-test production data.The model is further used for evaluation of the movable hydrocarbon contents and integrated assessment of the oil potential.Finally,the shale oil and gas production capacity and exploration prospects in the Luojia area are forecasted based on the analyses of factors controlling production capacity and the rock fracability.Through an integrated analysis of multi-factors(including the lithofacies,source rocks,reservoir properties,oil saturation,and production capacity),the shales in the Luojia area can be divided into three categories,i.e.,Class I(high porosity-high resistivity),Class II(medium porosity-medium resistivity),and Class III(low porosity-medium resistivity).展开更多
基金Funding from the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan under Grant Agreement No.AP13268843.
文摘This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment.
文摘As China in the decades ahead is to go through significant reorganization in the power sector and the petrochemical industry will see considerable growth,the transportation infrastructure for petroleum and gas should have a new shape. Implementing the largest infrastructure projects and creating on this basis a modern transportation network will not only see a new reincarnation of traditional industrial centers, but also open wider opportunities for regional development.
文摘The Songpan-Aba area, similar to those basins on the Yangtze block, following the rifting and separation of the Yangtze block, gradually developed into a passive marginal basin on a passive continent margin in Early Paleozoic, and later, with the Qinling-Qilian oceanic crust subduction and ocean closure, the Caledonides were formed and the foreland basin was superimposed upon. Being influenced by the Paleo-Tethyan extension, intra-continental rifting-margin basins were formed in Late Paleozoic. Following the formation of peripheral orogenic belt, the Upper Triassic again superimposed the foreland basin. The Mesozoic and Cenozoic overprinted the faulted basin, forming the Qinghai-Tibet Plateau domes. Hydrocarbon source rock in the Early Paleozoic passive basin, the Upper Paleozoic platform carbonates and the Triassic mudstones comprise the main source-reservoircap combination. Each layer of this area is at the advanced stage of diagenetic evolution, being entered the middle and late diagenetic stages, and anadiagenetic stage. Besides the highly matured Triassic and Permian in Zoige and Hongyuan, almost all the area is at the early stage of over maturatation, generating much methane. This area has the potential for oil and gas.
文摘Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study, and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type, which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin
基金This work was funded by National Science and Technology Major Project of China(Grant No.2011ZX05006-003).
文摘Shale oil and gas plays in continental rift basins are complicated and have not been reported elsewhere.In the Luojia area of the Jiyang Depression,an evaluation workflow for shale oil and gas in this continental rift basin is proposed.Based on analysis of oil-and gas-related geological conditions,a favorable area of shale oil and gas can be identified,and a high-frequency sequence stratigraphic framework of the target area can be established,therefore,the spatiotemporal distribution of shale has been elucidated in the Luojia area.According to the rock texture,structure,composition and color,petrographic classification criteria for shale are determined,and well log data are used to demarcate,track and predict high-quality lithofacies.Based on geochemical analyses and physical simulations of hydrocarbon generation,abundance,types and maturity of organic matter are analyzed,furthermore,geochemical parameters criteria of hydrocarbon generation and the characteristics of oil and gas occurrence in shales can be determined.Storage space types,assemblages and evolution characteristics of shale reservoirs are studied through core observation,thin-section analysis,electron microscopy examination and fluorescence spectrometry.Combined with analysis of reservoir physical properties,the reservoir performance is evaluated.A saturation model is established based on core analysis,well-log interpretation and well-test production data.The model is further used for evaluation of the movable hydrocarbon contents and integrated assessment of the oil potential.Finally,the shale oil and gas production capacity and exploration prospects in the Luojia area are forecasted based on the analyses of factors controlling production capacity and the rock fracability.Through an integrated analysis of multi-factors(including the lithofacies,source rocks,reservoir properties,oil saturation,and production capacity),the shales in the Luojia area can be divided into three categories,i.e.,Class I(high porosity-high resistivity),Class II(medium porosity-medium resistivity),and Class III(low porosity-medium resistivity).