A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid...A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.展开更多
It is a fact that the near surface loess has magnetic susceptibility anomalies in oil and gas areas. Why these anomalies occur and whether they have any significant value for the exploration of oil and gas reservoirs ...It is a fact that the near surface loess has magnetic susceptibility anomalies in oil and gas areas. Why these anomalies occur and whether they have any significant value for the exploration of oil and gas reservoirs are questions that geophysicists are mostly concerned about and study. We analyze the cause of the formation of surface loess susceptibility anomalies in oil and gas areas, process the observations of the susceptibility of loess samples taken from an oil and gas area in western China with proper mathematical methods, and determine the background value of loess susceptibility. These results are used to determine oil and gas prospect areas with a numeric evaluation factor based on the susceptibility anomalies. Actual oil wells have verified that using the susceptibility anomalies to indicate the location of oil and gas reservoirs is valid.展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as p...It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as paraffin is vulnerable to influences from human and biologic activities. Consequently, BTEX (short for benzene, toluene, ethyl benzene and xylem, which are direct biomarkers) among aromatic hydrocarbon series has been taken into account for the oil and gas prediction. Domestic and foreign study results demonstrate that BTEX is hardly disturbed and can well indicate oil and gas reservoirs. Based on measured data from a South China Sea area, the present authors have used self-developed visual assessment software for petroleum prospecting has been used to process data, strip background anomalies, and outline significant BTEX anomalies. By comparison with stratigraphic profiles of the target area, it is confirmed that BTEX is a good indication of marine oil and gas during the petroleum prospecting.展开更多
By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formati...By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.展开更多
Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(fi...Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(finite element program generator) by hole-to-surface resistivity method.Numerical solution was compared with analytical one for the homogeneity earth model.And a new parameter of deviation rate was proposed by analyzing different plot curves.The results show that the relative error of solution for homogeneity earth model may attain to 0.043%.And deviation rate decreases from 18% to 1% and its anomaly range becomes wide gradually when the depth of oil and gas reservoir increases from 200 to 1 500 m.If resistivity ratio of oil and gas reservoir to sur-rounding rock decreases from 100 to 10 for the resistive oil and gas reservoir,the amplitude attenuation of deviation rate nearly reaches 8%.When there exists stratum above oil and gas reservoir,and influence of resistive stratum may be eliminated or weakened and anomaly of oil and gas reservoir can be strengthened.展开更多
With the development of oil and gas exploration industry, researchers and engineers have realized that the key element controlling the migration of underground oil and gas and other fluid is not the pressure of stratu...With the development of oil and gas exploration industry, researchers and engineers have realized that the key element controlling the migration of underground oil and gas and other fluid is not the pressure of stratum, but the underground fluid potential. Therefore, it is very crucial to study the distribution rule of fluid potential in order to correctly determine the exploration target areas. This paper studies the fluid potential distribution in Tertiary of west Qaidam Basin, puts forward the model of underground oil and gas migration and predicts the areas for further exploration.展开更多
A number of isolated fault sags in Late Jurassic--Early Cretaceous were developed in the early stage of southern Songliao Basin,and unified to a depression basin in the late stage.Therefore,multiple isolated lower pet...A number of isolated fault sags in Late Jurassic--Early Cretaceous were developed in the early stage of southern Songliao Basin,and unified to a depression basin in the late stage.Therefore,multiple isolated lower petroliferous systems were formed with fault sags as source rocks.The source rocks of fault sags in Late Jurassic--Early Cretaceous were mainly described with gas generation as favorable source rocks,leading to the southern Songliao Basin rich in natural gas resources combined with organic gas resources in Nenjiang Formation.A number of tectonic movements in southern Songliao Basin led to the formation of abundant structural traps and complex fault systems,and controlled the distribution strata and positions of sources rocks in Late Jurassic--Early Cretaceous fault sags.The oil-gas reservoirs can be divided into two types,i.e.,primary and secondary ones.The primary oil-gas reservoirs were distributed in the fault sag strata and the bottom of overlying depression strata(lower Quan-1 Member).The oil-gas reservoir accumulation depended on the trap development situation and the distance from source rocks.The preservation conditions of oil-gas reservoirs depended on the degree of reconstruction in the late tectonism.The secondary oil-gas reservoirs were distribution in the Quantou Formation of depression strata,where oil and gas reservoir accumulation depended on three conditions,i.e.,trap development situation,deep gas sources and the fault to connect the shallow traps and deep gas sources.The southern Songliao Basin is rich in lower coal type gas,upper oil-gas and biogas resources,which are important resources in the future.展开更多
A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain go...A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain good posterior flow predictions without inversion of geological parameters of reservoir model.This paper presents an improved DSI method to fast predict reservoir state fields(e.g.saturation and pressure profiles)via observed production data.Firstly,a large number of production curves and state data are generated by reservoir model simulation to expand the data space of original DSI.Then,efficient history matching only on the observed production data is carried out via the original DSI to obtain related parameters which reflects the weight of the real reservoir model relative to prior reservoir models.Finally,those parameters are used to predict the oil saturation and pressure profiles of the real reservoir model by combining large amounts of state data of prior reservoir models.Two examples including conventional heterogeneous and unconventional fractured reservoir are implemented to test the performances of predicting saturation and pressure profiles of this improved DSI method.Besides,this method is also tested in a real field and the obtained results show the high computational efficiency and high accuracy of the practical application of this method.展开更多
Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud....Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.展开更多
How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry.To solve this problem,domestic petroleum engineers use the combination of the success...How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry.To solve this problem,domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume(SRV)fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tightgas carbonate reservoir,which has achieved a good stimulation effect in the pilot tests.To determine what reservoir conditions are suitable to carry out volume acid fracturing,this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas,and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate.Then,this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance,natural fracture,horizontal principal stress difference,orientation of insitu stress and natural fracture,and gives the solution for the limitation.The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production;the incremental or stimulation response is closely related with reservoir fracturing performance,the degree of development of natural fracture,the small intersection angle between hydraulic fracture and natural fracture,the large horizontal principal stress difference is easy to form a narrow fracture zone,and it is disadvantageous to create fracture network,but the degradable fiber diversion technology may largely weaken the disadvantage.The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate reservoir development is feasible in the Ordovician Majiagou Formation of lower Paleozoic,which is of great significance and practical value for domestic tight-gas carbonate reservoir development and studies in the future.展开更多
With oil and gas exploration transferring to deeper and more ancient marine strata,more researches have been conducted about the Meso—Neoproterozoic and Cambrian microbial carbonate rocks by petroleum geologists.The ...With oil and gas exploration transferring to deeper and more ancient marine strata,more researches have been conducted about the Meso—Neoproterozoic and Cambrian microbial carbonate rocks by petroleum geologists.The Cambrian deposits experienced the first transgression of the Paleozoic,with shallow marine facies depositing in most areas,which are favorable for different kinds of biological reproduction.The Lower Cambrian in Beijing area is lithologically dominated by purple red shales interbedded with limestones,the Middle Cambrian is mainly composed of thick oolitic limestones,and the Upper Cambrian consists of thin limestones and flat-pebble conglomerates.Two beds of microbial carbonate rocks were discovered in the Cambrian outcrops in the vicinity of Beijing.One is from the Zhangxia Formation of Middle Cambrian,and the other is from the Gushan Formation of Upper Cambrian.The microbialites are characterized by combination of multiple stromatolites forming different bioherms.The bioherms are mostly in oval shape and with different sizes,which are 3-4 m long,and 1-3 m high.The surrounding strata beneath the bioherms are oolitic limestones.A central core of flat-pebble conglomerates occurred within each bioherm.Wavy or columnar stromatolites grow on the basis of flat-pebble conglomerates,with dentate erosional surfaces.The bioherm carbonate rocks are interpreted as products from a deep ramp sedimentary environment where potential oil and gas reservoirs can be found.The analysis of sedimentological characteristics of bioherm carbonate rocks and its lithofacies palaeogeography has significant implication for petroleum exploration.Research on geological record of microbialites is beneficial to investigating the Earth evolution,biodiversity,palaeoenvironment and palaeoclimate change,as well as biological extinction event during geological transitions.It also gives warning to human beings of modern biological crisis.展开更多
基金Supported by National Natural Science Foundation of China(52274020,U21B2069,52288101)General Program of the Shandong Natural Science Foundation(ZR2020ME095)National Key Research and Development Program(2021YFC2800803).
文摘A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.
文摘It is a fact that the near surface loess has magnetic susceptibility anomalies in oil and gas areas. Why these anomalies occur and whether they have any significant value for the exploration of oil and gas reservoirs are questions that geophysicists are mostly concerned about and study. We analyze the cause of the formation of surface loess susceptibility anomalies in oil and gas areas, process the observations of the susceptibility of loess samples taken from an oil and gas area in western China with proper mathematical methods, and determine the background value of loess susceptibility. These results are used to determine oil and gas prospect areas with a numeric evaluation factor based on the susceptibility anomalies. Actual oil wells have verified that using the susceptibility anomalies to indicate the location of oil and gas reservoirs is valid.
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
基金The "863" Projects of MST (Faculty of Materials Science and Technology) of China under contract No2002AA615160
文摘It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as paraffin is vulnerable to influences from human and biologic activities. Consequently, BTEX (short for benzene, toluene, ethyl benzene and xylem, which are direct biomarkers) among aromatic hydrocarbon series has been taken into account for the oil and gas prediction. Domestic and foreign study results demonstrate that BTEX is hardly disturbed and can well indicate oil and gas reservoirs. Based on measured data from a South China Sea area, the present authors have used self-developed visual assessment software for petroleum prospecting has been used to process data, strip background anomalies, and outline significant BTEX anomalies. By comparison with stratigraphic profiles of the target area, it is confirmed that BTEX is a good indication of marine oil and gas during the petroleum prospecting.
基金Supported by the China National Science and Technology Major Project(2016ZX05023)Petro China Science and Technology Major Project(2018E-1809)。
文摘By reviewing the development history of stimulation techniques for deep/ultra-deep oil and gas reservoirs,the new progress in this field in China and abroad has been summed up,including deeper understanding on formation mechanisms of fracture network in deep/ultra-deep oil and gas reservoir,performance improvement of fracturing fluid materials,fine stratification of ultra-deep vertical wells,and mature staged multi-cluster fracturing technique for ultra-deep and highly deviated wells/horizontal wells.In light of the exploration and development trend of ultra-deep oil and gas reservoirs in China,the requirements and technical difficulties in ultra-deep oil and gas reservoir stimulation are discussed:(1)The research and application of integrated geological engineering technology is difficult.(2)The requirements on fracturing materials for stimulation are high.(3)It is difficult to further improve the production in vertical profile of the ultra-deep and hugely thick reservoirs.(4)The requirements on tools and supporting high-pressure equipment on the ground for stimulation are high.(5)It is difficult to achieve efficient stimulation of ultra-deep,high-temperature and high-pressure wells.(6)It is difficult to monitor directly the reservoir stimulation and evaluate the stimulation effect accurately after stimulation.In line with the complex geological characteristics of ultra-deep oil and gas reservoirs in China,seven technical development directions are proposed:(1)To establish systematic new techniques for basic research and evaluation experiments;(2)to strengthen geological research and improve the operational mechanism of integrating geological research and engineering operation;(3)to develop high-efficiency fracturing materials for ultra-deep reservoirs;(4)to research separated layer fracturing technology for ultra-deep and hugely thick reservoirs;(5)to explore fracture-control stimulation technology for ultra-deep horizontal well;(6)to develop direct monitoring technology for hydraulic fractures in ultra-deep oil and gas reservoirs;(7)to develop downhole fracturing tools with high temperature and high pressure tolerance and supporting wellhead equipment able to withstand high pressure.
基金Projects(2006AA06Z105,2007AA06Z134) supported by the National High-Tech Research and Development Program of China
文摘Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(finite element program generator) by hole-to-surface resistivity method.Numerical solution was compared with analytical one for the homogeneity earth model.And a new parameter of deviation rate was proposed by analyzing different plot curves.The results show that the relative error of solution for homogeneity earth model may attain to 0.043%.And deviation rate decreases from 18% to 1% and its anomaly range becomes wide gradually when the depth of oil and gas reservoir increases from 200 to 1 500 m.If resistivity ratio of oil and gas reservoir to sur-rounding rock decreases from 100 to 10 for the resistive oil and gas reservoir,the amplitude attenuation of deviation rate nearly reaches 8%.When there exists stratum above oil and gas reservoir,and influence of resistive stratum may be eliminated or weakened and anomaly of oil and gas reservoir can be strengthened.
文摘With the development of oil and gas exploration industry, researchers and engineers have realized that the key element controlling the migration of underground oil and gas and other fluid is not the pressure of stratum, but the underground fluid potential. Therefore, it is very crucial to study the distribution rule of fluid potential in order to correctly determine the exploration target areas. This paper studies the fluid potential distribution in Tertiary of west Qaidam Basin, puts forward the model of underground oil and gas migration and predicts the areas for further exploration.
文摘A number of isolated fault sags in Late Jurassic--Early Cretaceous were developed in the early stage of southern Songliao Basin,and unified to a depression basin in the late stage.Therefore,multiple isolated lower petroliferous systems were formed with fault sags as source rocks.The source rocks of fault sags in Late Jurassic--Early Cretaceous were mainly described with gas generation as favorable source rocks,leading to the southern Songliao Basin rich in natural gas resources combined with organic gas resources in Nenjiang Formation.A number of tectonic movements in southern Songliao Basin led to the formation of abundant structural traps and complex fault systems,and controlled the distribution strata and positions of sources rocks in Late Jurassic--Early Cretaceous fault sags.The oil-gas reservoirs can be divided into two types,i.e.,primary and secondary ones.The primary oil-gas reservoirs were distributed in the fault sag strata and the bottom of overlying depression strata(lower Quan-1 Member).The oil-gas reservoir accumulation depended on the trap development situation and the distance from source rocks.The preservation conditions of oil-gas reservoirs depended on the degree of reconstruction in the late tectonism.The secondary oil-gas reservoirs were distribution in the Quantou Formation of depression strata,where oil and gas reservoir accumulation depended on three conditions,i.e.,trap development situation,deep gas sources and the fault to connect the shallow traps and deep gas sources.The southern Songliao Basin is rich in lower coal type gas,upper oil-gas and biogas resources,which are important resources in the future.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(No.ZJW-2019-04)Cooperative Innovation Center of Unconventional Oil and Gas(Ministry of Education&Hubei Province),Yangtze University(No.UOG2020-17)the National Natural Science Foundation of China(No.51874044,51922007)。
文摘A data-space inversion(DSI)method has been recently proposed and successfully applied to the history matching and production prediction of reservoirs.Based on Bayesian theory,DSI can directly and effectively obtain good posterior flow predictions without inversion of geological parameters of reservoir model.This paper presents an improved DSI method to fast predict reservoir state fields(e.g.saturation and pressure profiles)via observed production data.Firstly,a large number of production curves and state data are generated by reservoir model simulation to expand the data space of original DSI.Then,efficient history matching only on the observed production data is carried out via the original DSI to obtain related parameters which reflects the weight of the real reservoir model relative to prior reservoir models.Finally,those parameters are used to predict the oil saturation and pressure profiles of the real reservoir model by combining large amounts of state data of prior reservoir models.Two examples including conventional heterogeneous and unconventional fractured reservoir are implemented to test the performances of predicting saturation and pressure profiles of this improved DSI method.Besides,this method is also tested in a real field and the obtained results show the high computational efficiency and high accuracy of the practical application of this method.
文摘Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.
基金The project was supported jointly by National Science and Technology Major Project of China(2011ZX05044)National Natural Science Foundation of China(51474182).
文摘How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry.To solve this problem,domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume(SRV)fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tightgas carbonate reservoir,which has achieved a good stimulation effect in the pilot tests.To determine what reservoir conditions are suitable to carry out volume acid fracturing,this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas,and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate.Then,this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance,natural fracture,horizontal principal stress difference,orientation of insitu stress and natural fracture,and gives the solution for the limitation.The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production;the incremental or stimulation response is closely related with reservoir fracturing performance,the degree of development of natural fracture,the small intersection angle between hydraulic fracture and natural fracture,the large horizontal principal stress difference is easy to form a narrow fracture zone,and it is disadvantageous to create fracture network,but the degradable fiber diversion technology may largely weaken the disadvantage.The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate reservoir development is feasible in the Ordovician Majiagou Formation of lower Paleozoic,which is of great significance and practical value for domestic tight-gas carbonate reservoir development and studies in the future.
基金financed by the China National Science Foundation(research project No. 2016ZX05004-001)support from RIPED and related oilfield companies
文摘With oil and gas exploration transferring to deeper and more ancient marine strata,more researches have been conducted about the Meso—Neoproterozoic and Cambrian microbial carbonate rocks by petroleum geologists.The Cambrian deposits experienced the first transgression of the Paleozoic,with shallow marine facies depositing in most areas,which are favorable for different kinds of biological reproduction.The Lower Cambrian in Beijing area is lithologically dominated by purple red shales interbedded with limestones,the Middle Cambrian is mainly composed of thick oolitic limestones,and the Upper Cambrian consists of thin limestones and flat-pebble conglomerates.Two beds of microbial carbonate rocks were discovered in the Cambrian outcrops in the vicinity of Beijing.One is from the Zhangxia Formation of Middle Cambrian,and the other is from the Gushan Formation of Upper Cambrian.The microbialites are characterized by combination of multiple stromatolites forming different bioherms.The bioherms are mostly in oval shape and with different sizes,which are 3-4 m long,and 1-3 m high.The surrounding strata beneath the bioherms are oolitic limestones.A central core of flat-pebble conglomerates occurred within each bioherm.Wavy or columnar stromatolites grow on the basis of flat-pebble conglomerates,with dentate erosional surfaces.The bioherm carbonate rocks are interpreted as products from a deep ramp sedimentary environment where potential oil and gas reservoirs can be found.The analysis of sedimentological characteristics of bioherm carbonate rocks and its lithofacies palaeogeography has significant implication for petroleum exploration.Research on geological record of microbialites is beneficial to investigating the Earth evolution,biodiversity,palaeoenvironment and palaeoclimate change,as well as biological extinction event during geological transitions.It also gives warning to human beings of modern biological crisis.