Several civilian vehicles in China operate in urban traffic conditions and have their motor oil changed every 5,000 km.This study investigates the variations in oil properties after servicing at 5,000 km,based on syst...Several civilian vehicles in China operate in urban traffic conditions and have their motor oil changed every 5,000 km.This study investigates the variations in oil properties after servicing at 5,000 km,based on systematic road tests(including a repeated test,a parallel test,and a new vehicle test).The physicochemical properties,changes in components,oxidation stability,detergent‐dispersant performance,and tribological properties of motor oils were analyzed.The results showed that the total acid number(TAN)of oils increased with the operation mileage,by up to 1.41 mgKOH/g.The total base number(TBN)decreased after the road tests were completed,and the decrease was less than 44.6%.The kinematic viscosity(KV)of most oils decreased initially and then stabilized in the middle stage,before starting to increase later in the experiment.The change in KV at 100℃was less than 15.96%.The oxidation onset temperature(OOT)of the oils diminished gradually with the operation mileage.All OOT values of the used oils were higher than 210℃.A spot test indicated that the used oils retained their detergentdispersant performance to an appropriate extent.The four‐ball wear scar diameters and friction coefficient of the used oils did not increase significantly after the road tests were completed.This study can serve as a reference for end‐users when changing motor oils.展开更多
A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to cr...A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.展开更多
Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m P...Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m Pa·s) in the volume ratio of 75%/25%.Two series of experiments were carried out:in the first,the reactor was sequentially supplied with toluene whereas in the second,toluene was continuously supplied.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France) was used at an initial concentration of 0.5 dry mass g·(mixture L)^(-1).The elimination capacity(EC) was investigated as well as the change in biomass concentration over time.Toluene biodegradation was very ef ficient(removal ef ficiency,RE=100%) for toluene flows ranging from 0.2 to 1.2 ml·h^(-1),corresponding to elimination capacities of up to 104 g·m^(-3)·h^(-1).For a toluene flow of 1.2 ml·h^(-1),the biomass concentration measured at the end of the experiment was 4.7 dry mass g·(mixture L)^(-1).The oxygen concentration in the liquid phase was clearly not a limiting factor in these operating conditions.Based on these results,an extrapolation leading to the design of a large-scale pilot TPPB can now be considered to study toluene degradation performances in industrial conditions.展开更多
Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reducti...Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.展开更多
In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and ...In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.展开更多
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(51575402)the National Natural Science Foundation of Hunan Province of China(No.2020JJ5217).
文摘Several civilian vehicles in China operate in urban traffic conditions and have their motor oil changed every 5,000 km.This study investigates the variations in oil properties after servicing at 5,000 km,based on systematic road tests(including a repeated test,a parallel test,and a new vehicle test).The physicochemical properties,changes in components,oxidation stability,detergent‐dispersant performance,and tribological properties of motor oils were analyzed.The results showed that the total acid number(TAN)of oils increased with the operation mileage,by up to 1.41 mgKOH/g.The total base number(TBN)decreased after the road tests were completed,and the decrease was less than 44.6%.The kinematic viscosity(KV)of most oils decreased initially and then stabilized in the middle stage,before starting to increase later in the experiment.The change in KV at 100℃was less than 15.96%.The oxidation onset temperature(OOT)of the oils diminished gradually with the operation mileage.All OOT values of the used oils were higher than 210℃.A spot test indicated that the used oils retained their detergentdispersant performance to an appropriate extent.The four‐ball wear scar diameters and friction coefficient of the used oils did not increase significantly after the road tests were completed.This study can serve as a reference for end‐users when changing motor oils.
基金the Shandong Provincial Natural Science Foundation(No.ZR2019MEE038,ZR202110260011)the Fundamental Research Funds for the Central Universities(No.19CX02038A)。
文摘A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.
基金the French Environment and Energy Management Agency(ADEME) for their support through a PhD fellowship for M.Guillerm
文摘Toluene degradation performances were studied in a 10 L Two-Phase Partitioning Bioreactor(TPPB).The liquid phase consisted of a mixture of water and PDMS 50(Poly Di Methyl Siloxane,i.e.silicone oil,viscosity of 46 m Pa·s) in the volume ratio of 75%/25%.Two series of experiments were carried out:in the first,the reactor was sequentially supplied with toluene whereas in the second,toluene was continuously supplied.Activated sludge from the wastewater treatment plant of Beaurade(Rennes,France) was used at an initial concentration of 0.5 dry mass g·(mixture L)^(-1).The elimination capacity(EC) was investigated as well as the change in biomass concentration over time.Toluene biodegradation was very ef ficient(removal ef ficiency,RE=100%) for toluene flows ranging from 0.2 to 1.2 ml·h^(-1),corresponding to elimination capacities of up to 104 g·m^(-3)·h^(-1).For a toluene flow of 1.2 ml·h^(-1),the biomass concentration measured at the end of the experiment was 4.7 dry mass g·(mixture L)^(-1).The oxygen concentration in the liquid phase was clearly not a limiting factor in these operating conditions.Based on these results,an extrapolation leading to the design of a large-scale pilot TPPB can now be considered to study toluene degradation performances in industrial conditions.
基金funded by the National Natural Science Foundation of China(Nos.41272253,41402206 and 41530636)the National Science Foundation of Jilin Province(No.20130101027JC)+2 种基金 “the 12th Five-Year Plan” science and technology research projects of education department in Jilin Province(No.2014B012)the Graduate Innovation Fund of Jilin University(No.2015065)grateful for the support of the Key Laboratory of Groundwater Resources and Environment,Ministry of Education
文摘Widespread contamination by nitrobenzene(NB) in sediments and groundwater requires better understanding of the biogeochemical removal process of the pollutant. NB degradation, coupled with dissimilatory iron reduction, is one of the most efficient pollutant removal methods. However, research on NB degradation coupled to indigenous microorganism dissimilatory iron reduction stimulated by electron donors is still experimental. A model for remediation in an actual polluted site does not currently exist.Therefore, in this study, the dynamics was derived from the Michaelis–Menten model(when the mass ratio of emulsified vegetable oil and NB reached the critical value 91:1). The effect of SO4^(2-), NO3^-, Ca^(2+)/Mg^(2+), and the grain size of aquifer media on the dynamics were studied, and the NB degradation dynamic model was then modified based on the most significant factors. Utilizing the model, the remediation time could be calculated in a contaminated site.
基金supported by the National High-Tech R&D Program(863)of China(No.2013AA064402)the National Natural Science Foundation of China(Nos.81301461 and 51474034)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ13H190002)the Scientific Research Foundation of Zhejiang Provincial Health Bureau(No.2012KYB083),China
文摘In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 ℃ and pH 5.5. We sequenced the genome and found a single chromosome of 4800175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.