Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operat...Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operating costs.Meanwhile,oil depots and pipelines form an entire system,and each operation in a single oil depot may have influence on others.It is a tough job to make a scheduling plan when considering the factors of delivering contaminated oil and batches migration.So far,studies simultaneously considering operating constraints and contaminated oil issues are rare.Aiming at making a scheduling plan with the lowest operating costs,the paper establishes a mixed-integer linear programming model,considering a sequence of operations,such as delivery, export, blending,fractionating and exchanging operations,and batch property differences of the same oil as well as influence of batch migration on contaminated volume.Moreover,the paper verifies the linear relationship between oil concentration and blending capability by mathematical deduction.Finally,the model is successfully applied to one of the product pipelines in China and proved to be practical.展开更多
The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theor...The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.展开更多
Introduction Lightning can cause great destruction. According to the record in the northern China, more than 150 lightning strokes occur on a power system annually. High voltage (millions of volts) and large current (...Introduction Lightning can cause great destruction. According to the record in the northern China, more than 150 lightning strokes occur on a power system annually. High voltage (millions of volts) and large current (hundreds of -kA) associated with lightning, will damage property and even kill people and livestocks. It will be very dangerous if a lightning stroke strikes oil depot of power plant or substation. In addition, the high voltage induced by the electrostatic charge generated due to oil flowing will probably cause damage unless the electrification has been limited and drained off.展开更多
基金part of the Program of ‘‘Study of the mechanism of complex heat and mass transfer during batch transport process in product pipelines’’ funded under the National Natural Science Foundation of China, Grant Number 51474228
文摘Oil depots along products pipelines are important components of the pipeline transportation system and down-stream markets.The operating costs of oil depots account for a large proportion of the total system’s operating costs.Meanwhile,oil depots and pipelines form an entire system,and each operation in a single oil depot may have influence on others.It is a tough job to make a scheduling plan when considering the factors of delivering contaminated oil and batches migration.So far,studies simultaneously considering operating constraints and contaminated oil issues are rare.Aiming at making a scheduling plan with the lowest operating costs,the paper establishes a mixed-integer linear programming model,considering a sequence of operations,such as delivery, export, blending,fractionating and exchanging operations,and batch property differences of the same oil as well as influence of batch migration on contaminated volume.Moreover,the paper verifies the linear relationship between oil concentration and blending capability by mathematical deduction.Finally,the model is successfully applied to one of the product pipelines in China and proved to be practical.
文摘The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.
文摘Introduction Lightning can cause great destruction. According to the record in the northern China, more than 150 lightning strokes occur on a power system annually. High voltage (millions of volts) and large current (hundreds of -kA) associated with lightning, will damage property and even kill people and livestocks. It will be very dangerous if a lightning stroke strikes oil depot of power plant or substation. In addition, the high voltage induced by the electrostatic charge generated due to oil flowing will probably cause damage unless the electrification has been limited and drained off.