The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proport...The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.展开更多
The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1...The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.展开更多
基金This research was financially supported by the Natural Science Foundation of China(Grant No.40672093)CNPC Innovation Fund(07El001)the ESS-China Hydrocarborn Geoscience Collaboration Project under Natural Resources Canada's International 0pportunities Program.We extend our thanks to South 0il Exploration and Development Company of PetroChina for samples collection.
文摘The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.
基金Project(41272122)supported by the National Natural Science Foundation of China
文摘The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.