The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. Th...The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper...The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.展开更多
Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oi...Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia.展开更多
As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing ra...As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T=25—40℃,pH=6—8, HRT(Hydraulic retention time)=36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7 %. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment.展开更多
The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentrati...The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.展开更多
To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minut...To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minutes of ultrasonic treatment reduced viscosity and carbon residue by 14.1% and 7.4%, respectively. This also produced an increase in saturates content and a decrease in the content of aromatics, resins and asphaltenes. Furthermore, the parameters of the average molecular structure were characterized by FT-IR, and ~1 H-NMR, while an increasingly greater change in the parameters were produced by an ultrasonic treatment interval of up to 7 minutes. The mechanical stirring and cavitation from ultrasonic treatment caused a series of changes in the molecules of residual oil. Microscopic changes affected the parameters of the average molecular structure, as usually shown in SARA fractions. The changes in the thermal reaction properties of residual oil after ultrasonic treatment were analyzed by thermogravimetry. As the ultrasonic treatment time increased, the apparent activation energy needed for pyrolysis decreased gradually, as did the temperature.展开更多
Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs i...Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs in oil storage. In this paper,the control technology of sources of VOCs pollution in oil storage was analyzed from the source,process and end treatment,and measures for the prevention and control of VOCs pollution in oil storage were proposed.展开更多
Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. ...Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.展开更多
Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined ...Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined drugs of natural essential oils (CDNEO) formulation in managing throat pain in patients with acute viral pharyngitis. With the growing resistance to traditional antibacterial treatments, essential oils have attracted interest for their potential analgesic, anti-inflammatory, and antibacterial properties. Results: The study involved 81 patients randomly divided into two groups: those taking a medical device containing combined drugs of natural essential oils (CDNEO) and those taking a placebo. A questionnaire was used to assess throat pain among the participants, with 45 receiving the CDNEO and 36 the placebo. The CDNEO group experienced a significant reduction in throat pain, with the average VAS score decreasing from 5.36 to 1.09, compared to the placebo group, which saw a decrease from 4.97 to 2.19. This difference, with p Conclusion: By using a double-blind research method, it was possible to evaluate the effectiveness of the oils more objectively, since there was also a control placebo group. The study shows that CDNEO significantly reduces throat pain and decreases the need for additional pain relief medication in patients with acute viral pharyngitis. The findings suggest that natural essential oils could serve as an alternative treatment for pharyngitis, particularly in efforts to minimize NSAID use and combat antibiotic resistance.展开更多
Tamanu oil, derived from the nuts of Calophyllum inophyllum, has gained increasing attention for its potential in acne management due to its purported anti-inflammatory and wound-healing properties. This analysis eval...Tamanu oil, derived from the nuts of Calophyllum inophyllum, has gained increasing attention for its potential in acne management due to its purported anti-inflammatory and wound-healing properties. This analysis evaluates the efficacy of tamanu oil in acne treatment with a specific focus on its impact on inflammation and scar reduction. The novelty of this research lies in its comprehensive analysis of tamanu oil’s dual mechanism of action: reducing acne-related inflammation and promoting the healing of acne scars. Clinical trials and laboratory analyses were conducted to assess the oil’s effectiveness in diminishing erythema, swelling, and post-acne scarring compared to conventional treatments. Preliminary findings demonstrate that tamanu oil significantly reduces inflammation and accelerates wound healing, potentially offering a promising adjunct or alternative to standard acne therapies. Future research should aim to optimize formulation and application protocols, long-term effects, and comparative therapeutic efficacy with other anti-inflammatory agents. Tamanu oil offers a novel and effective approach to acne management, with potential advantages that go beyond inflammation reduction to include enhanced scar reduction, making it a subject that warrants further investigation.展开更多
An ultrasonic technology for enhanced oil recovery is described. For the implementation of this technology, the equipment was specially developed, taking into account the working conditions. The criteria for selection...An ultrasonic technology for enhanced oil recovery is described. For the implementation of this technology, the equipment was specially developed, taking into account the working conditions. The criteria for selections of well candidates were developed. The technology has been tested in two different regions in different geological conditions. The results of these field tests indicate the high efficiency of the proposed technology. The success rate of the method reached 90% and the increase in oil production was in the range of 40% - 100%.展开更多
Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of C...Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).展开更多
Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up t...Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.展开更多
基金Supported by the Foundation of Science and Technology Project of Guangdong Province (2004B33301001)
文摘The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
基金the National Natural Science Foundation of China (50275093)
文摘The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.
文摘Oil palm currently occupies the largest acreage of farm land in Malaysia. In 2011, the production of palm oil in Malaysia was recorded as 19.8 million tons which has led to a huge amount of wastewater known as palm oil mill effluent (POME). This work focuses on the ponding system which acts as wastewater treatment plant in order to treat POME. The conventional ponding system applied in mills consists of a series of seven ponds. The maintenance costs of the pond are expensive thus study of alternative methods is needed. POME treatment using zeolite shows a potential to overcome the problem. Samples collected from selected ponds are tested and analyzed using water analyzer method. Result from adsorption by zeolite shows a significant reduction of COD, BOD, Fe, Zn, Mn and turbidity. This shows that zeolite is highly potential to be applied as adsorbent in the POME treatment plants. The results here may lead to lower maintenance cost, lower quantity of treatment ponds and lesser land occupied for the treatment of POME in Malaysia.
文摘As an oil-decomposable mixture of two bacteria strains(Bacillus sp. and Pseudomonas sp.), Y3 was isolated after 50 d domestication under the condition that oil was used as the limited carbon source. The decomposing rate by Y3 was higher than that by each separate individual strain, indicating a synergistic effect of the two bacteria. Under the conditions that T=25—40℃,pH=6—8, HRT(Hydraulic retention time)=36 h and the oil concentration at 0.1%, Y3 yielded the highest decomposing rate of 95.7 %. Y3 was also applied in an organic waste treatment machine and a certain rate of activated bacteria was put into the stuffing. A series of tests including humidity, pH, temperature, C/N rate and oil percentage of the stuffing were carried out to check the efficacy of oil-decomposition. Results showed that the oil content of the stuffing with inoculums was only half of that of the control. Furthermore, the bacteria were also beneficial to maintain the stability of the machine operating. Therefore, the bacteria mixture as well as the machines in this study could be very useful for waste treatment.
文摘The waterproof and oil-repellent finishing of the dyed single-sided plain cotton fabric was carried out by two-dip and two-pad process. The influences of baking temperature (°C), baking time (min), concentration of finishing solution (g/L) and percentage of liquid on waterproof effect of fabric were analyzed;the influences of the contact angle and the baking temperature (°C), the baking time (min) and the concentration of the finishing agent (g/L) on the oil repellency of the fabric were investigated. The results showed that the best water-repellent finishing technology for cotton fabric was the concentration of finishing agent 30 g/L, the baking temperature 110°C, the baking time 1.5 min and the liquid-uptake 70%. The best oil-repellent finishing process for cotton fabric is 35 g/L for finishing agent, 150°C for baking temperature, and 1.5 min for baking time and pick up rate of 80%. After cotton fabric is treated with water-repellent and oil-repellent agent, the water-repellent contact angle of the fabric can reach 128°and the oil-repellent grade 6. The best finishing effect is obtained at this time. After the finishing agent acts on the surface of the fibre, the surface properties of the fibre can be changed, and the surface of the fibre can be changed from hydrophilicity to hydrophobicity. The finishing agent has good film-forming property, which makes the surface of cotton fibre smooth and has good waterproof and oil-repellent performance.
文摘To upgrade residual oil, the residual oil was subjected to ultrasonic treatment with an output of 800 W, at a temperature of 70 ℃ and at intervals ranging from 0 to 11 minutes. The experiment illustrated that 7 minutes of ultrasonic treatment reduced viscosity and carbon residue by 14.1% and 7.4%, respectively. This also produced an increase in saturates content and a decrease in the content of aromatics, resins and asphaltenes. Furthermore, the parameters of the average molecular structure were characterized by FT-IR, and ~1 H-NMR, while an increasingly greater change in the parameters were produced by an ultrasonic treatment interval of up to 7 minutes. The mechanical stirring and cavitation from ultrasonic treatment caused a series of changes in the molecules of residual oil. Microscopic changes affected the parameters of the average molecular structure, as usually shown in SARA fractions. The changes in the thermal reaction properties of residual oil after ultrasonic treatment were analyzed by thermogravimetry. As the ultrasonic treatment time increased, the apparent activation energy needed for pyrolysis decreased gradually, as did the temperature.
文摘Oil storage is a source of volatile organic compounds( VOCs). Volatile organic compounds can cause different damages to the environment,animals and plants. Therefore, it is important to control the discharge of VOCs in oil storage. In this paper,the control technology of sources of VOCs pollution in oil storage was analyzed from the source,process and end treatment,and measures for the prevention and control of VOCs pollution in oil storage were proposed.
文摘Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.
文摘Objective: Viral pharyngitis, commonly known as a sore throat, is a widespread condition affecting people of all ages globally. This study aimed to assess the effectiveness of a medical device containing the combined drugs of natural essential oils (CDNEO) formulation in managing throat pain in patients with acute viral pharyngitis. With the growing resistance to traditional antibacterial treatments, essential oils have attracted interest for their potential analgesic, anti-inflammatory, and antibacterial properties. Results: The study involved 81 patients randomly divided into two groups: those taking a medical device containing combined drugs of natural essential oils (CDNEO) and those taking a placebo. A questionnaire was used to assess throat pain among the participants, with 45 receiving the CDNEO and 36 the placebo. The CDNEO group experienced a significant reduction in throat pain, with the average VAS score decreasing from 5.36 to 1.09, compared to the placebo group, which saw a decrease from 4.97 to 2.19. This difference, with p Conclusion: By using a double-blind research method, it was possible to evaluate the effectiveness of the oils more objectively, since there was also a control placebo group. The study shows that CDNEO significantly reduces throat pain and decreases the need for additional pain relief medication in patients with acute viral pharyngitis. The findings suggest that natural essential oils could serve as an alternative treatment for pharyngitis, particularly in efforts to minimize NSAID use and combat antibiotic resistance.
文摘Tamanu oil, derived from the nuts of Calophyllum inophyllum, has gained increasing attention for its potential in acne management due to its purported anti-inflammatory and wound-healing properties. This analysis evaluates the efficacy of tamanu oil in acne treatment with a specific focus on its impact on inflammation and scar reduction. The novelty of this research lies in its comprehensive analysis of tamanu oil’s dual mechanism of action: reducing acne-related inflammation and promoting the healing of acne scars. Clinical trials and laboratory analyses were conducted to assess the oil’s effectiveness in diminishing erythema, swelling, and post-acne scarring compared to conventional treatments. Preliminary findings demonstrate that tamanu oil significantly reduces inflammation and accelerates wound healing, potentially offering a promising adjunct or alternative to standard acne therapies. Future research should aim to optimize formulation and application protocols, long-term effects, and comparative therapeutic efficacy with other anti-inflammatory agents. Tamanu oil offers a novel and effective approach to acne management, with potential advantages that go beyond inflammation reduction to include enhanced scar reduction, making it a subject that warrants further investigation.
文摘An ultrasonic technology for enhanced oil recovery is described. For the implementation of this technology, the equipment was specially developed, taking into account the working conditions. The criteria for selections of well candidates were developed. The technology has been tested in two different regions in different geological conditions. The results of these field tests indicate the high efficiency of the proposed technology. The success rate of the method reached 90% and the increase in oil production was in the range of 40% - 100%.
文摘Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).
文摘Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.