This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit,...This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit, in which the initial data is “well-prepared” and the velocity field enjoys the slip boundary conditions. The main idea is to derive the uniform energy estimates for nonlinear systems and corresponding incompressible limit.展开更多
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal condu...A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.展开更多
In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using d...In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.展开更多
In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time g...In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.展开更多
We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary la...We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformatioris. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.展开更多
The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equatio...The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary dif- ferential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.展开更多
文摘This paper studies the existence and uniqueness of local strong solutions to an Oldroyd-B model with density-dependent viscosity in a bounded domain Ω ⊂ R<sup>d</sup>, d = 2 or 3 via incompressible limit, in which the initial data is “well-prepared” and the velocity field enjoys the slip boundary conditions. The main idea is to derive the uniform energy estimates for nonlinear systems and corresponding incompressible limit.
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
文摘A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.
基金supported by The project supported by the Natural Science Foundation of Shandong Province of China (Y2007A06)
文摘In this paper, the generalized Oldroyd-B with fractional calculus approach is used. An exact solution in terms of Fox-H function for flow past an accelerated horizontal plate in a rotating fluid is obtained by using discrete Laplace transform method. A comparison among the influence of various parameters in the Oldroyd-B model and the angular velocity of the fluid on the velocity profiles is made through numerical method in graphic form.
基金The work is supported by the Guangxi Natural Science Foundation[Grant Numbers 2018GXNSFBA281020,2018GXNSFAA138121]the Doctoral Starting up Foundation of Guilin University of Technology[Grant Number GLUTQD2016044].
文摘In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.
基金supported by the Deanship of Scientific Research(DSR)King Abdulaziz University,Jeddah,Saudi Arabia(Grant No.32-130-36-Hi Ci)
文摘We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformatioris. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.
文摘The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary dif- ferential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.