This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The v...This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.展开更多
In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time g...In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.展开更多
We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary la...We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformatioris. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.展开更多
The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equatio...The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary dif- ferential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.展开更多
The constitutive equation for a semiconcentrated fibre suspension in the Oldroyd-B fluid has been derived from a statistical model of such a suspension by employing the molecular theory for polymeric liquids.To circum...The constitutive equation for a semiconcentrated fibre suspension in the Oldroyd-B fluid has been derived from a statistical model of such a suspension by employing the molecular theory for polymeric liquids.To circumvent theoretical difficulties in viscoelastic fluid mechanics,several simplified models are used to account for the interactions of fibres and polymer molecules.Some of material functions are calculated in terms of the constitutive equation.展开更多
The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfe...The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature, and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases.展开更多
The two-dimensional boundary layer flow of an Oldroyd-B fluid in the presence of nanoparticles is investigated. Convective heat and mass conditions are considered in the presence of thermal radiation and heat generati...The two-dimensional boundary layer flow of an Oldroyd-B fluid in the presence of nanoparticles is investigated. Convective heat and mass conditions are considered in the presence of thermal radiation and heat generation. The Brownian motion and thermophoresis effects are retained. The nonlinear partial differential equations are reduced into the ordinary differential equation (ODE) systems. The resulting ODE systems are solved for the series solutions. The results are analyzed for various physical parameters of interest. Numerical values of the local Nusselt and Sherwood numbers are also computed and analyzed.展开更多
The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modi...The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is de- marcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.展开更多
The effect of non-linear convection in a laminar three-dimensional Oldroyd-B fluid flow is addressed. The heat transfer phenomenon is explored by considering the non-linear thermal radiation and heat generation/absorp...The effect of non-linear convection in a laminar three-dimensional Oldroyd-B fluid flow is addressed. The heat transfer phenomenon is explored by considering the non-linear thermal radiation and heat generation/absorption. The boundary layer as- sumptions are taken into account to govern the mathematical model of the flow analy- sis. Some suitable similarity variables are introduced to transform the partial differen- tial equations into ordinary differential systems. fifth-order techniques with the shooting method The Runge-Kutta-Fehlberg fourth- and are used to obtain the solutions of the dimensionless velocities and temperature. The effects of various physical parameters on the fluid velocities and temperature are plotted and examined. A comparison with the exact and homotopy perturbation solutions is made for the viscous fluid case, and an excellent match is noted. The numerical values of the wall shear stresses and the heat transfer rate at the wall are tabulated and investigated. The enhancement in the values of the Deborah number shows a reverse behavior on the liquid velocities. The results show that the temperature and the thermal boundary layer are reduced when the non- linear convection parameter increases. The values of the Nusselt number are higher in the non-linear radiation situation than those in the linear radiation situation.展开更多
The present study addresses the three-dimensional flow of an Oldroyd-B fluid over a stretching surface with convective boundary conditions. The problem formulation is presented using the conservation laws of mass, mom...The present study addresses the three-dimensional flow of an Oldroyd-B fluid over a stretching surface with convective boundary conditions. The problem formulation is presented using the conservation laws of mass, momentum, and energy. The solutions to the dimensionless problems are computed. The convergence of series solutions by the homotopy analysis method (HAM) is discussed graphically and numerically. The graphs are plotted for various parameters of the temperature profile. The series solutions are verified by providing a comparison in a limiting case. The numerical values of the local Nusselt number are analyzed.展开更多
This paper establishes the velocity field and the adequate shear stress corresponding to the motion of an Oldroyd-B fluid between two infinite coaxial circular cylinders by means of finite Hankel transforms. The flow ...This paper establishes the velocity field and the adequate shear stress corresponding to the motion of an Oldroyd-B fluid between two infinite coaxial circular cylinders by means of finite Hankel transforms. The flow of the fluid is produced by the inner cylinder which applies a time-dependent longitudinal shear stress to the fluid. The exact analytical solutions, presented in series form in terms of Bessel functions, satisfy all imposed initial and boundary conditions. The general solutions can be easily specialized to give similar solutions for Maxwell, second grade and Newtonian fluids performing the same motion. Finally, some characteristics of the motion as well as the influence of the material parameters on the behavior of the fluid motion are graphically illustrated.展开更多
In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution f...In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution for the velocity field has been obtained by means of Laplace and finite Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence of the velocity field on fractional as well as material parameters has been illustrated graphically. The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the generalized Oldroyd-B fluid.展开更多
The aim of this paper is to present a numerical study of oscillatory motion of Oldroyd-B fluid in a uniform magnetic field through a small circular pipe. First, we derive the orientation stress tensor by considering t...The aim of this paper is to present a numerical study of oscillatory motion of Oldroyd-B fluid in a uniform magnetic field through a small circular pipe. First, we derive the orientation stress tensor by considering the Brownian force. Then, the orientation stress tensor is incorporated by taking Hookean dumbbells on Brownian configuration fields in the Oldroyd-B model. The Oldroyd-B model is then reformulated coupled with the momentum equation and the total stress tensor. Finally, we analyze the orientation stress tensor in the pipe by the numerical simulations of the model and showed that the effect of orientation stress tensor is considerable although the Brownian force is sufficiently small.展开更多
An initial value problem concerning the motion of an incompressible, electrically conducting, viscoelastic Oldroyd-B fluid bounded by an infinite rigid non-conducting plate is solved. The unsteady motion is generated ...An initial value problem concerning the motion of an incompressible, electrically conducting, viscoelastic Oldroyd-B fluid bounded by an infinite rigid non-conducting plate is solved. The unsteady motion is generated impulsively from rest in the fluid due to half rectified sine pulses subjected on the plate in its own plane in presence of an external magnetic field. It is assumed that no external electric field is acting on the system and the magnetic Reynolds number is very small. The operational method is used to obtain exact solutions for the fluid velocity and the shear stress on the wall. Quantitative analysis of the results is presented with a view to disclose the simultaneous effects of the external magnetic field and the fluid elasticity on the flow and the wall shear stress for different periods of pulsation of the plate. It is also shown that the classical and hydromagnetic Rayleigh solutions appear as the limiting cases of the present analysis.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
BACKGROUND Strongyloides stercoralis(S.stercoralis),is a prevalent parasitic worm that infects humans.It is found all over the world,particularly in tropical and subtropical areas.Strongyloidiasis is caused mostly by ...BACKGROUND Strongyloides stercoralis(S.stercoralis),is a prevalent parasitic worm that infects humans.It is found all over the world,particularly in tropical and subtropical areas.Strongyloidiasis is caused mostly by the parasitic nematode S.stercoralis.Filariform larvae typically infest humans by coming into contact with dirt,such as by walking barefoot or through exposure to human waste or sewage.CASE SUMMARY A 35-year-old male presented to our department with a 10-year history of abdominal pain and diarrhea,which had recently recurred for the past 3 months.A computed tomography(CT)scan revealed acute cholecystitis accompanied by a gallbladder stone.Additionally,a 5 mm stone was found obstructing the lower portion of the common bile duct,resulting in dilatation of both the intrahepatic and extrahepatic bile ducts to 8 mm,in contrast to a previous CT scan.Endoscopic ultrasonography revealed a prominent echogenicity in the lower portion of the common bile duct.Consequently,an endoscopic retrograde cholangiopancreatography was conducted via endoscopic sphincterotomy and balloon dilatation.The microscope revealed the presence of viable S.stercoralis rhabditiform larvae in the biliary fluid.We documented an uncommon instance of S.stercoralis infection in the biliary fluid of a patient suffering from gallstones and cholangitis.CONCLUSION The film we created provides a visual representation of the movement of the living S.stercoralis in biliary fluid.展开更多
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order w...The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order was obtained for a small curvature ratio, κ. The variations of axial velocity distribution and secondary flow structure with F, Re and We were discussed in detail in order to investigate the combined effects of the three parameters on flow structure. The combined effects of the Coriolis force, inertia force and elastic force on the temperature distribution were also analyzed, which are greater than the adding independent effects of the three forces. The variations of the flow rate and Nusselt number with the rotation, inertia and elasticity were examined as well. The results show the characteristics of the heat and mass transfer of the Oldroyd-B fluids in a rotating curved pipe.展开更多
The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of r...The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate, while the increase of retardation time tends to stabilize the flow and suppress the heat transfer. The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, re- suiting in more complicated flow patterns in the porous medium.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12262026)the Natural Science Foundation of the Inner Mongolia Autonomous Region of China(No.2021MS01007)+1 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China(No.NMGIRT2323)the Fundamental Research Funds for the Central Universities(Nos.2232022G-13,2232023G-13,and 2232024G-13)。
文摘This study deals with the analytical investigation of oscillatory squeeze film flow through a Brinkman viscoelastic Oldroyd-B fluid-saturated porous layer subject to two vertically harmonically oscillatory disks.The validity of the present proposed analytical solutions is first demonstrated for the Newtonian fluids when bothΛ_(1)andΛ_(2)tend to zero by comparison with the previous literature.Results demonstrate that an increase in the elasticity parameterΛ_(1)correlates with a rise in axial velocities,indicating that the relaxation timeΛ_(1)facilitates enhanced squeeze flow.In the case of squeeze film flow in porous layers,low oscillating frequencies exert minimal effects on axial velocities,independent of variations in the viscoelasticity parameterΛ_(1).However,at higher oscillating frequencies,axial velocities escalate with increasing the viscoelasticity parameterΛ_(1).Furthermore,the retardation timeΛ_(2)of the viscoelastic fluid shows no significant effect on the axial velocity,regardless of oscillating frequency changes in both pure fluids and porous layers.
基金The work is supported by the Guangxi Natural Science Foundation[Grant Numbers 2018GXNSFBA281020,2018GXNSFAA138121]the Doctoral Starting up Foundation of Guilin University of Technology[Grant Number GLUTQD2016044].
文摘In this paper,we consider the numerical schemes for a timefractionalOldroyd-B fluidmodel involving the Caputo derivative.We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods.Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes.Numerical examples for two-dimensional problems further confirmthe robustness of the schemes with first-and second-order accurate in time.
基金supported by the Deanship of Scientific Research(DSR)King Abdulaziz University,Jeddah,Saudi Arabia(Grant No.32-130-36-Hi Ci)
文摘We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformatioris. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier's law of heat conduction.
文摘The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary dif- ferential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.
基金The project Supported by the University of Melbourne of Australia,the National Natural Scicnce Foundation of China and Zhejiang Province
文摘The constitutive equation for a semiconcentrated fibre suspension in the Oldroyd-B fluid has been derived from a statistical model of such a suspension by employing the molecular theory for polymeric liquids.To circumvent theoretical difficulties in viscoelastic fluid mechanics,several simplified models are used to account for the interactions of fibres and polymer molecules.Some of material functions are calculated in terms of the constitutive equation.
文摘The incompressible flow of a non-Newtonian fluid with mixed convection along a stretching sheet is analyzed. The heat transfer phenomenon is discussed through thermal radiation. The effects of the melting heat transfer and heat generation/absorption are also taken. Suitable transformations are utilized to attain the nonlinear ordinary differential expressions. The convergent series solutions are presented. The fluid flow, temperature, and surface heat transfer rate are examined graphically. It is observed that the velocity decreases when the relaxation time increases while increases when the retardation time is constant. The results also reveal that the temperature distribution reduces when the radiation parameter increases.
基金Project supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia(No.37-130-35-HiCi)
文摘The two-dimensional boundary layer flow of an Oldroyd-B fluid in the presence of nanoparticles is investigated. Convective heat and mass conditions are considered in the presence of thermal radiation and heat generation. The Brownian motion and thermophoresis effects are retained. The nonlinear partial differential equations are reduced into the ordinary differential equation (ODE) systems. The resulting ODE systems are solved for the series solutions. The results are analyzed for various physical parameters of interest. Numerical values of the local Nusselt and Sherwood numbers are also computed and analyzed.
基金Project supported by the Innovation in Science Pursuit for the Inspired Research(INSPIRE)Program(No.DST/INSPIRE Fellowship/[IF 150253])
文摘The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffu- sivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is de- marcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.
文摘The effect of non-linear convection in a laminar three-dimensional Oldroyd-B fluid flow is addressed. The heat transfer phenomenon is explored by considering the non-linear thermal radiation and heat generation/absorption. The boundary layer as- sumptions are taken into account to govern the mathematical model of the flow analy- sis. Some suitable similarity variables are introduced to transform the partial differen- tial equations into ordinary differential systems. fifth-order techniques with the shooting method The Runge-Kutta-Fehlberg fourth- and are used to obtain the solutions of the dimensionless velocities and temperature. The effects of various physical parameters on the fluid velocities and temperature are plotted and examined. A comparison with the exact and homotopy perturbation solutions is made for the viscous fluid case, and an excellent match is noted. The numerical values of the wall shear stresses and the heat transfer rate at the wall are tabulated and investigated. The enhancement in the values of the Deborah number shows a reverse behavior on the liquid velocities. The results show that the temperature and the thermal boundary layer are reduced when the non- linear convection parameter increases. The values of the Nusselt number are higher in the non-linear radiation situation than those in the linear radiation situation.
基金Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah(No. 2-135/1433HiCi)
文摘The present study addresses the three-dimensional flow of an Oldroyd-B fluid over a stretching surface with convective boundary conditions. The problem formulation is presented using the conservation laws of mass, momentum, and energy. The solutions to the dimensionless problems are computed. The convergence of series solutions by the homotopy analysis method (HAM) is discussed graphically and numerically. The graphs are plotted for various parameters of the temperature profile. The series solutions are verified by providing a comparison in a limiting case. The numerical values of the local Nusselt number are analyzed.
文摘This paper establishes the velocity field and the adequate shear stress corresponding to the motion of an Oldroyd-B fluid between two infinite coaxial circular cylinders by means of finite Hankel transforms. The flow of the fluid is produced by the inner cylinder which applies a time-dependent longitudinal shear stress to the fluid. The exact analytical solutions, presented in series form in terms of Bessel functions, satisfy all imposed initial and boundary conditions. The general solutions can be easily specialized to give similar solutions for Maxwell, second grade and Newtonian fluids performing the same motion. Finally, some characteristics of the motion as well as the influence of the material parameters on the behavior of the fluid motion are graphically illustrated.
文摘In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution for the velocity field has been obtained by means of Laplace and finite Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence of the velocity field on fractional as well as material parameters has been illustrated graphically. The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the generalized Oldroyd-B fluid.
文摘The aim of this paper is to present a numerical study of oscillatory motion of Oldroyd-B fluid in a uniform magnetic field through a small circular pipe. First, we derive the orientation stress tensor by considering the Brownian force. Then, the orientation stress tensor is incorporated by taking Hookean dumbbells on Brownian configuration fields in the Oldroyd-B model. The Oldroyd-B model is then reformulated coupled with the momentum equation and the total stress tensor. Finally, we analyze the orientation stress tensor in the pipe by the numerical simulations of the model and showed that the effect of orientation stress tensor is considerable although the Brownian force is sufficiently small.
文摘An initial value problem concerning the motion of an incompressible, electrically conducting, viscoelastic Oldroyd-B fluid bounded by an infinite rigid non-conducting plate is solved. The unsteady motion is generated impulsively from rest in the fluid due to half rectified sine pulses subjected on the plate in its own plane in presence of an external magnetic field. It is assumed that no external electric field is acting on the system and the magnetic Reynolds number is very small. The operational method is used to obtain exact solutions for the fluid velocity and the shear stress on the wall. Quantitative analysis of the results is presented with a view to disclose the simultaneous effects of the external magnetic field and the fluid elasticity on the flow and the wall shear stress for different periods of pulsation of the plate. It is also shown that the classical and hydromagnetic Rayleigh solutions appear as the limiting cases of the present analysis.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
基金Sanming Project of Medicine in Shenzhen,No.SZSM202311017.
文摘BACKGROUND Strongyloides stercoralis(S.stercoralis),is a prevalent parasitic worm that infects humans.It is found all over the world,particularly in tropical and subtropical areas.Strongyloidiasis is caused mostly by the parasitic nematode S.stercoralis.Filariform larvae typically infest humans by coming into contact with dirt,such as by walking barefoot or through exposure to human waste or sewage.CASE SUMMARY A 35-year-old male presented to our department with a 10-year history of abdominal pain and diarrhea,which had recently recurred for the past 3 months.A computed tomography(CT)scan revealed acute cholecystitis accompanied by a gallbladder stone.Additionally,a 5 mm stone was found obstructing the lower portion of the common bile duct,resulting in dilatation of both the intrahepatic and extrahepatic bile ducts to 8 mm,in contrast to a previous CT scan.Endoscopic ultrasonography revealed a prominent echogenicity in the lower portion of the common bile duct.Consequently,an endoscopic retrograde cholangiopancreatography was conducted via endoscopic sphincterotomy and balloon dilatation.The microscope revealed the presence of viable S.stercoralis rhabditiform larvae in the biliary fluid.We documented an uncommon instance of S.stercoralis infection in the biliary fluid of a patient suffering from gallstones and cholangitis.CONCLUSION The film we created provides a visual representation of the movement of the living S.stercoralis in biliary fluid.
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
基金the National Natural Science Foundation of China(Grant No. 10272096).
文摘The flow and convected heat transfer of the Oldroyd-B fluids in a rotating curved pipe with circular cross-section were investigated by employing a perturbation method. A perturbation solution up to the second order was obtained for a small curvature ratio, κ. The variations of axial velocity distribution and secondary flow structure with F, Re and We were discussed in detail in order to investigate the combined effects of the three parameters on flow structure. The combined effects of the Coriolis force, inertia force and elastic force on the temperature distribution were also analyzed, which are greater than the adding independent effects of the three forces. The variations of the flow rate and Nusselt number with the rotation, inertia and elasticity were examined as well. The results show the characteristics of the heat and mass transfer of the Oldroyd-B fluids in a rotating curved pipe.
基金Project supported by the National Key Basic Research Development Program of China (973 Program, Grant Nos.2006CB705803, 2013CB531200)
文摘The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated. The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate, while the increase of retardation time tends to stabilize the flow and suppress the heat transfer. The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time, re- suiting in more complicated flow patterns in the porous medium.