Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively....Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.展开更多
Addition of fluoroalkyl iodides to olefins in the presence of hydrogen peroxide(H_2O_(?)) in acetone,acetonitrile or ethanol gave the corresponding 1:1 adducts in good yields.Reaction of fluoroalkyl iodide with dially...Addition of fluoroalkyl iodides to olefins in the presence of hydrogen peroxide(H_2O_(?)) in acetone,acetonitrile or ethanol gave the corresponding 1:1 adducts in good yields.Reaction of fluoroalkyl iodide with diallyl ether(DAE)yielded tetrahydrofuran derivatives,p-Hydroquinone (p-HQ)can partly suppress the reaction.A radical initiation mechanism is proposed.展开更多
基金Supports by the National Natural Science Foundation of China(21666030,21366025)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.
基金This project was supported by the National Natural Science Foundation of China.
文摘Addition of fluoroalkyl iodides to olefins in the presence of hydrogen peroxide(H_2O_(?)) in acetone,acetonitrile or ethanol gave the corresponding 1:1 adducts in good yields.Reaction of fluoroalkyl iodide with diallyl ether(DAE)yielded tetrahydrofuran derivatives,p-Hydroquinone (p-HQ)can partly suppress the reaction.A radical initiation mechanism is proposed.