Three dimensional(3D) nano-LiMn0.6Fe0.4PO4@C/CNT composite was successfully synthesized by an oleylamine-assisted solvothermal method. The prepared composite showed excellent electrochemical performance, especially ...Three dimensional(3D) nano-LiMn0.6Fe0.4PO4@C/CNT composite was successfully synthesized by an oleylamine-assisted solvothermal method. The prepared composite showed excellent electrochemical performance, especially superior high rate capability. It could deliver a specific discharge capacity of103.1 mAh/g, even at 80 C. The superior high rate performance of the as-prepared LiMn0.6Fe0.4PO4@C/CNT electrode is attributed to its unique 3D conducting network:(1) the prepared LiMn0.6Fe0.4PO4@C active particles were in nano-scale with a size of 30-50 nm;(2) LiMn0.6Fe0.4PO4 nanoparticles were uniformly coated by amorphous carbon with a thickness of 3 nm;(3) the graphitized conductive CNTs were dispersed homogenously among the LiMn0.6Fe0.4PO4@C active particles. The synergistic effect of the nanoscale amorphous carbon coated LiMn0.6Fe0.4PO4@C active particles and the graphitized CNTs reduces the diffusion path of the lithium ions and benefits the transference ability of electron.展开更多
基金supported by the National Natural Science Foundation of China (No. 51474196)the Major State Basic Research Development Program of China (973 Program No. 2013CB934700)
文摘Three dimensional(3D) nano-LiMn0.6Fe0.4PO4@C/CNT composite was successfully synthesized by an oleylamine-assisted solvothermal method. The prepared composite showed excellent electrochemical performance, especially superior high rate capability. It could deliver a specific discharge capacity of103.1 mAh/g, even at 80 C. The superior high rate performance of the as-prepared LiMn0.6Fe0.4PO4@C/CNT electrode is attributed to its unique 3D conducting network:(1) the prepared LiMn0.6Fe0.4PO4@C active particles were in nano-scale with a size of 30-50 nm;(2) LiMn0.6Fe0.4PO4 nanoparticles were uniformly coated by amorphous carbon with a thickness of 3 nm;(3) the graphitized conductive CNTs were dispersed homogenously among the LiMn0.6Fe0.4PO4@C active particles. The synergistic effect of the nanoscale amorphous carbon coated LiMn0.6Fe0.4PO4@C active particles and the graphitized CNTs reduces the diffusion path of the lithium ions and benefits the transference ability of electron.