Electrodes prepared by anodic oxidation of Ti foils are robust and not toxic materials for the electrocatalytic reduction of oxalic acid to glycolic acid, allowing the development of a renewable energy-driven process ...Electrodes prepared by anodic oxidation of Ti foils are robust and not toxic materials for the electrocatalytic reduction of oxalic acid to glycolic acid, allowing the development of a renewable energy-driven process for producing an alcoholic compound from an organic acid at low potential and room temperature. Coupled with the electrochemical synthesis of the oxalic acid from CO_(2),this process represents a new green and low-carbon path to produce added value chemicals from CO_(2). Various electrodes prepared by anodic oxidation of Ti foils were investigated. They were characterized by the presence of a TiO_(2) nanotube array together with the presence of small patches, debris, or TiO_(2) nanoparticles. The concentration of oxygen vacancies, the amount of Ti^(3+) measured by X-ray photoelectron spectroscopy(XPS) and the intensity of the anodic peak measured by cyclic voltammetry, were positively correlated with the achieved oxalic acid conversion and glycolic acid yield. The analysis of the results indicates the presence of small amorphous TiO_(2) nanoparticles(or surface patches or debris) interacting with TiO_(2) nanotubes, the sites responsible for the conversion of oxalic acid and glycolic acid yield. By varying this structural characteristic of the electrodes, it is possible to tune the glycolic acid to glyoxylic acid relative ratio. A best cumulative Faradaic efficiency(FE) of about 84% with FE to glycolic acid around 60% and oxalic conversion about 30% was observed.展开更多
基金funding from the European Union’s Horizon 2020 research and innovation program under grant agreement ID 767798 (OCEAN)MIUR PRIN 2017 project CO_(2) ONLY project nr. 2017WR2LRS。
文摘Electrodes prepared by anodic oxidation of Ti foils are robust and not toxic materials for the electrocatalytic reduction of oxalic acid to glycolic acid, allowing the development of a renewable energy-driven process for producing an alcoholic compound from an organic acid at low potential and room temperature. Coupled with the electrochemical synthesis of the oxalic acid from CO_(2),this process represents a new green and low-carbon path to produce added value chemicals from CO_(2). Various electrodes prepared by anodic oxidation of Ti foils were investigated. They were characterized by the presence of a TiO_(2) nanotube array together with the presence of small patches, debris, or TiO_(2) nanoparticles. The concentration of oxygen vacancies, the amount of Ti^(3+) measured by X-ray photoelectron spectroscopy(XPS) and the intensity of the anodic peak measured by cyclic voltammetry, were positively correlated with the achieved oxalic acid conversion and glycolic acid yield. The analysis of the results indicates the presence of small amorphous TiO_(2) nanoparticles(or surface patches or debris) interacting with TiO_(2) nanotubes, the sites responsible for the conversion of oxalic acid and glycolic acid yield. By varying this structural characteristic of the electrodes, it is possible to tune the glycolic acid to glyoxylic acid relative ratio. A best cumulative Faradaic efficiency(FE) of about 84% with FE to glycolic acid around 60% and oxalic conversion about 30% was observed.