Periventricular white matter injury (PWMI)is very common in survivors of premature birth,and the final outcomes are a reduction in myelinated neurons leading to white matter hypomyelination.How and (or) why the oligod...Periventricular white matter injury (PWMI)is very common in survivors of premature birth,and the final outcomes are a reduction in myelinated neurons leading to white matter hypomyelination.How and (or) why the oligodendrocyte lineage develops abnormally and myelination is reduced is a hot topic in the field.This study focuses on the effect of intrauterine inflammation on the proliferation of oligodendrocyte lineage cells and the underlying mechanisms.Lipopolysaccharide (LPS)(300μg/kg)was intraperitoneally injected into pregnant Sprague-Dawley rats at embryonic days 19 and 20 to establish a rat model of intrauterine infection-induced white matter injury.Corpus callosum tissues were collected at postnatal day 14(P14)to quantify the number of oligodendrocytes,the number and proliferation of oligodendrocyte precursor cells (OPCs), and the expression of myelin proteins (MBP and PLP).Furthermore,the expression of Writ and Notch signaling-related proteins was analyzed.The results showed that the number of oligodendrocytes in the corpus callosum tissues of LPS-treated rats was reduced,and the expression levels of myelinating proteins were down-regulated.Further analysis showed that the Notch signaling pathway was down-regulated in the LPS-treated group.These results indicate that intrauterine LPS may inhibit the proliferation of OPCs by down-regulating the Notch rather than the Writ signaling pathway,leading to hypomyelination of white matter.展开更多
Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted in...Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.展开更多
Objective: To investigate in vitro differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in chemical conditional medium. Methods: The mixed glial cells from cerebral cortices of 48-hou...Objective: To investigate in vitro differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in chemical conditional medium. Methods: The mixed glial cells from cerebral cortices of 48-hour-old Sprague-Dawley (SD) rats were cultured in vitro. The OPCs were separated by shaking procedure around 9–10 d in the primary culture. Then the isolated OPCs were further transferred into the chemical conditional medium for cell differentiation. The pattern of OPCs maturation in vitro was continuously observed with contrast phase microscopy and mature oligodendrocytes were further identified by immunocytochemical assays. Results: OPCs grew well when co-cultured with glial cells and distinct cellular stratification formed about 9–10 d in the primary culture, which indicated the appropriate opportunity for the separation of OPCs. Following cultured in the chemical conditional medium, the OPCs progressively differentiated into the mature oligodendrocytes. These mature oligodendrocytes were also immunostained with the oligodendrocyte lineage-specific antibody, Oligo2. Conclusion: The OPCs isolated from the cerebral cortices of neonatal SD rats can progressively differentiate into mature oligodendrocytes in the chemical conditional medium in vitro.展开更多
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular funct...Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.展开更多
Oligodendrocyte lineage cells(OL-lineage cells)are a cell population that are crucial for mammalian central nervous system(CNS)myelination.OL-lineage cells go through developmental stages,initially differentiating int...Oligodendrocyte lineage cells(OL-lineage cells)are a cell population that are crucial for mammalian central nervous system(CNS)myelination.OL-lineage cells go through developmental stages,initially differentiating into oligodendrocyte precursor cells(OPCs),before becoming immature oligodendrocytes,then mature oligodendrocytes(OLs).While the main function of cell lineage is in myelin formation,and increasing number of studies have turned to explore the immunological characteristics of these cells.Initially,these studies focused on discovering how OPCs and OLs are affected by the immune system,and then,how these immunological changes influence the myelination process.However,recent studies have uncovered another feature of OL-lineage cells in our immune systems.It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation,and the expression of these factors changes under various pathologic conditions.Evidence suggests that OL-lineage cells actually modulate immune functions.Indeed,OL-lineage cells appear to play both"victim"and"agent"in the CNS which raises a number of questions.Here,we summarize immunologic changes in OL-lineage cells and their effects,as well as consider OL-lineage cell changes which influence immune cells under pathological conditions.We also describe some of the underlying mechanisms of these changes and their effects.Finally,we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.展开更多
The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination.Recent studies have shed light on the molecular mechanisms underlying these white matter abnor...The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination.Recent studies have shed light on the molecular mechanisms underlying these white matter abnormalities.Rodent models of fetal alcohol syndrome and human studies have shown suppressed oligodendrocyte differentiation and apoptosis of oligodendrocyte precursor cells.Ethanol exposure led to reduced expression of myelin basic protein and delayed myelin basic protein expression in rat and mouse models of fetal alcohol syndrome and in human histopathological specimens.Several studies have reported increased expression of many chemokines in dysmyelinating disorders in central nervous system,including multiple sclerosis and fetal alcohol syndrome.Acute ethanol exposure reduced levels of the neuroprotective insulin-like growth factor-1 in fetal and maternal sheep and in human fetal brain tissues,while ethanol increased the expression of tumor necrosis factor α in mouse and human neurons.White matter lesions have been induced in the developing sheep brain by alcohol exposure in early gestation.Rat fetal alcohol syndrome models have shown reduced axon diameters,with thinner myelin sheaths,as well as reduced numbers of oligodendrocytes,which were also morphologically aberrant oligodendrocytes.Expressions of markers for mature myelination,including myelin basic protein,also were reduced.The accumulating knowledge concerning the mechanisms of ethanol-induced dysmyelination could lead to the development of strategies to prevent dysmyelination in children exposed to ethanol during fetal development.Future studies using fetal oligodendrocyte-and oligodendrocyte precursor cell-derived exosomes isolated from the mother's blood may identify biomarkers for fetal alcohol syndrome and even implicate epigenetic changes in early development that affect oligodendrocyte precursor cell and oligodendrocyte function in adulthood.By combining various imaging modalities with molecular studies,it may be possible to determine which fetuses are at risk and to intervene therapeutically early in the pregnancy.展开更多
The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions o...The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1 L(myelin transcription factor 1-like), mainly expressed in neurons,has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1 L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1 L in neuron/glia antigen 2-positive(NG2+)OPCs was significantly higher than that in mature CC1+oligodendrocytes. In primary cultured OPCs,overexpression of Myt1 L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1 L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. Ch IP assays showed that Myt1 L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1 L is an essential regulator of OPC differentiation, thereby supporting Myt1 L as a potential therapeutic target for demyelinating diseases.展开更多
The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelin...The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid(SA) is mainly derived from star anise, and is reported to have antiinfluenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis(EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination.Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated m TOR. Taken together, our resultsdemonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.展开更多
Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesi...Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury.展开更多
Astrocytes are indispensable for central nervous system development and homeostasis.In response to injury and disease,astrocytes are integral to the immunological-and the,albeit limited,repair response.In this review,...Astrocytes are indispensable for central nervous system development and homeostasis.In response to injury and disease,astrocytes are integral to the immunological-and the,albeit limited,repair response.In this review,we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models.We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination.Finally,we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.展开更多
The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-O...The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.展开更多
基金This project was supported by grants from Natural Science Foundation of China,Hubei Province (No.2017CFB645)and National Natural Science Foundation of China (No.81471519).
文摘Periventricular white matter injury (PWMI)is very common in survivors of premature birth,and the final outcomes are a reduction in myelinated neurons leading to white matter hypomyelination.How and (or) why the oligodendrocyte lineage develops abnormally and myelination is reduced is a hot topic in the field.This study focuses on the effect of intrauterine inflammation on the proliferation of oligodendrocyte lineage cells and the underlying mechanisms.Lipopolysaccharide (LPS)(300μg/kg)was intraperitoneally injected into pregnant Sprague-Dawley rats at embryonic days 19 and 20 to establish a rat model of intrauterine infection-induced white matter injury.Corpus callosum tissues were collected at postnatal day 14(P14)to quantify the number of oligodendrocytes,the number and proliferation of oligodendrocyte precursor cells (OPCs), and the expression of myelin proteins (MBP and PLP).Furthermore,the expression of Writ and Notch signaling-related proteins was analyzed.The results showed that the number of oligodendrocytes in the corpus callosum tissues of LPS-treated rats was reduced,and the expression levels of myelinating proteins were down-regulated.Further analysis showed that the Notch signaling pathway was down-regulated in the LPS-treated group.These results indicate that intrauterine LPS may inhibit the proliferation of OPCs by down-regulating the Notch rather than the Writ signaling pathway,leading to hypomyelination of white matter.
基金supported by the National Natural Science Foundation of China, No. 81100916, 30400464,81271316the Postdoctoral Science Foundation of China,No. 201104901907
文摘Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.
文摘Objective: To investigate in vitro differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in chemical conditional medium. Methods: The mixed glial cells from cerebral cortices of 48-hour-old Sprague-Dawley (SD) rats were cultured in vitro. The OPCs were separated by shaking procedure around 9–10 d in the primary culture. Then the isolated OPCs were further transferred into the chemical conditional medium for cell differentiation. The pattern of OPCs maturation in vitro was continuously observed with contrast phase microscopy and mature oligodendrocytes were further identified by immunocytochemical assays. Results: OPCs grew well when co-cultured with glial cells and distinct cellular stratification formed about 9–10 d in the primary culture, which indicated the appropriate opportunity for the separation of OPCs. Following cultured in the chemical conditional medium, the OPCs progressively differentiated into the mature oligodendrocytes. These mature oligodendrocytes were also immunostained with the oligodendrocyte lineage-specific antibody, Oligo2. Conclusion: The OPCs isolated from the cerebral cortices of neonatal SD rats can progressively differentiate into mature oligodendrocytes in the chemical conditional medium in vitro.
基金supported by the Natural Science Foundation of Zhejiang Province,No.LQ23C090003 (to CZ)the Major Project on Brain Science and Analog Brain Research of Ministry of Science and Technology of China,No.2022ZD0204701 (to MQ)the National Natural Science Foundation of China,No.32170969 (to MQ)。
文摘Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
基金This work was supported by research grants from Shenzhen Fundamental Research Program(Grants No.RCYX20200714114644167,JCYJ20190809161405495,and JCYJ20210324123212035)National Natural Science Foundation of China(Grants No.81971309,32170980,and 32070964)Guangdong Basic and Applied Basic Research Foundation(Grants No.2019A1515011333 and 2022B1515020012).
文摘Oligodendrocyte lineage cells(OL-lineage cells)are a cell population that are crucial for mammalian central nervous system(CNS)myelination.OL-lineage cells go through developmental stages,initially differentiating into oligodendrocyte precursor cells(OPCs),before becoming immature oligodendrocytes,then mature oligodendrocytes(OLs).While the main function of cell lineage is in myelin formation,and increasing number of studies have turned to explore the immunological characteristics of these cells.Initially,these studies focused on discovering how OPCs and OLs are affected by the immune system,and then,how these immunological changes influence the myelination process.However,recent studies have uncovered another feature of OL-lineage cells in our immune systems.It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation,and the expression of these factors changes under various pathologic conditions.Evidence suggests that OL-lineage cells actually modulate immune functions.Indeed,OL-lineage cells appear to play both"victim"and"agent"in the CNS which raises a number of questions.Here,we summarize immunologic changes in OL-lineage cells and their effects,as well as consider OL-lineage cell changes which influence immune cells under pathological conditions.We also describe some of the underlying mechanisms of these changes and their effects.Finally,we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.
基金supported by NIH grants R01NS97846,R01NS097846-02S1 and R01NS092876 awarded to MESShriners research grant SHC-85400 awarded to MESUSA Pennsylvania State Department grant Project 10:420491-04400-02 to ND。
文摘The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination.Recent studies have shed light on the molecular mechanisms underlying these white matter abnormalities.Rodent models of fetal alcohol syndrome and human studies have shown suppressed oligodendrocyte differentiation and apoptosis of oligodendrocyte precursor cells.Ethanol exposure led to reduced expression of myelin basic protein and delayed myelin basic protein expression in rat and mouse models of fetal alcohol syndrome and in human histopathological specimens.Several studies have reported increased expression of many chemokines in dysmyelinating disorders in central nervous system,including multiple sclerosis and fetal alcohol syndrome.Acute ethanol exposure reduced levels of the neuroprotective insulin-like growth factor-1 in fetal and maternal sheep and in human fetal brain tissues,while ethanol increased the expression of tumor necrosis factor α in mouse and human neurons.White matter lesions have been induced in the developing sheep brain by alcohol exposure in early gestation.Rat fetal alcohol syndrome models have shown reduced axon diameters,with thinner myelin sheaths,as well as reduced numbers of oligodendrocytes,which were also morphologically aberrant oligodendrocytes.Expressions of markers for mature myelination,including myelin basic protein,also were reduced.The accumulating knowledge concerning the mechanisms of ethanol-induced dysmyelination could lead to the development of strategies to prevent dysmyelination in children exposed to ethanol during fetal development.Future studies using fetal oligodendrocyte-and oligodendrocyte precursor cell-derived exosomes isolated from the mother's blood may identify biomarkers for fetal alcohol syndrome and even implicate epigenetic changes in early development that affect oligodendrocyte precursor cell and oligodendrocyte function in adulthood.By combining various imaging modalities with molecular studies,it may be possible to determine which fetuses are at risk and to intervene therapeutically early in the pregnancy.
基金supported by the International Cooperation and Exchange Program of the National Natural Science Foundation of China(81461138035)the National Natural Science Foundation of China(81371326,31571066,and 31371068)+2 种基金the National Basic Research Development Program of China(2016YFA0100802)the UK Medical Research Council(MR/M010503/1)the UK Multiple Sclerosis Society(33)
文摘The differentiation and maturation of oligodendrocyte precursor cells(OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1 L(myelin transcription factor 1-like), mainly expressed in neurons,has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1 L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1 L in neuron/glia antigen 2-positive(NG2+)OPCs was significantly higher than that in mature CC1+oligodendrocytes. In primary cultured OPCs,overexpression of Myt1 L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1 L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. Ch IP assays showed that Myt1 L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1 L is an essential regulator of OPC differentiation, thereby supporting Myt1 L as a potential therapeutic target for demyelinating diseases.
基金supported by the National Natural Science Foundation of China(31571066 and 31771129)the National Basic Research Development Program of China(2016YFA0100802)
文摘The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells(OPCs) to differentiate, since OPCs and oligodendrocytelineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid(SA) is mainly derived from star anise, and is reported to have antiinfluenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis(EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination.Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated m TOR. Taken together, our resultsdemonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.
基金supported by the National Natural Science Foundation of China,No.81601957
文摘Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury.
基金supported by the Heart and Stroke Foundation and Ontario Institute of Regenerative Medicine (New Ideas Grant)Canada First Research Excellence Fund(Medicine by Design)+2 种基金the National Sciences and Engineering Research Councilthe Jurgen Manchot Foundationthe Christiane and Claudia Hempel Foundation for Clinical Stem Cell Research and the James and Elisabeth Cloppenburg,Peek and Cloppenburg Düsseldorf Stiftung (to PK)
文摘Astrocytes are indispensable for central nervous system development and homeostasis.In response to injury and disease,astrocytes are integral to the immunological-and the,albeit limited,repair response.In this review,we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models.We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination.Finally,we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
基金supported by talent startup funding from Fudan University(Nos.JIF101017,SXF101012,and JIF101047)Science Innovation 2030-Brain Science and Brain-Inspired Intelligence Technology Major Project(No.2021ZD0201100 Task 4 and No.2021ZD0201104)from the Ministry of Science and Technology(MOST),China+3 种基金Jinsong Wu was supported by Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)ZJ Lab,and operating grant of Shanghai Brain Bank technical system(No.16JC1420103)Edwin Wang was supported by Alberta Innovates Translational Chair Program in Cancer Genomics,the Natural Sciences and Engineering Research Council of Canada(NSERC,No.RGPIN-2017-04885)Canadian Foundation of Innovation(No.36655).
文摘The association of neurogenesis and gliogenesis with glioma remains unclear.By conducting single-cell RNA-seq analyses on 26 gliomas,we reported their classification into primitive oligodendrocyte precursor cell(pri-OPC)-like and radial glia(RG)-like tumors and validated it in a public cohort and TCGA glioma.The RG-like tumors exhibited wild-type isocitrate dehydrogenase and tended to carry EGFR mutations,and the pri-OPC-like ones were prone to carrying TP53 mutations.Tumor subclones only in pri-OPC-like tumors showed substantially down-regulated MHC-I genes,suggesting their distinct immune evasion programs.Furthermore,the two subgroups appeared to extensively modulate glioma-infiltrating lymphocytes in distinct manners.Some specific genes not expressed in normal immune cells were found in glioma-infiltrating lymphocytes.For example,glial/glioma stem cell markers OLIG1/PTPRZ1 and B cell-specific receptors IGLC2/IGKC were expressed in pri-OPC-like and RG-like glioma-infiltrating lymphocytes,respectively.Their expression was positively correlated with those of immune checkpoint genes(e.g.,LGALS33)and poor survivals as validated by the increased expression of LGALS3 upon IGKC overexpression in Jurkat cells.This finding indicated a potential inhibitory role in tumor-infiltrating lymphocytes and could provide a new way of cancer immune evasion.