The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its...The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .展开更多
Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri...Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri Lanka.This is initially developed for the tree species called‘Hora’(Dipterocarpus zeylanicus)in wet zone of Sri Lanka.Here the core samples are extracted and further analyzed by means of the different image processing techniques such as Gaussian kernel blurring,use of Sobel filters,double threshold analysis,Hough line tran sformation and etc.The operations such as rescaling,slicing and measuring are also used in line with image processing techniques to achieve the desired results.Ultimately a Graphical user interface(GUI)is developed to cater for the user requirements in a user friendly environment.It has been found that the average growth ring identification accuracy of the proposed system is 93%and the overall average accuracy of detecting the age is 81%.Ultimately the proposed system will provide an insight and contributes to the forestry related activities and researches in Sri Lanka.展开更多
“Industry 4.0” has become the future direction of manufacturing industry. To prepare for this upgrade, it is important to study the automation of semiconductor failure analysis. In this paper, the sample polishing a...“Industry 4.0” has become the future direction of manufacturing industry. To prepare for this upgrade, it is important to study the automation of semiconductor failure analysis. In this paper, the sample polishing activity was studied for upgrading to a smart polishing process. Two major issues were identified in implementing the smart polishing process: the optimization of current polishing recipes and the capability of making decisions based on live feedback. With the help of Solver add-in, the current polishing recipes were optimized. To make decisions based on live images captured during polishing, strategies were explored based on finger polishing process study. Our investigation showed that a grey scale line profile analysis on images can be used to build the vision capability of our smart polishing system, on which a decision- making capability can be developed.展开更多
传统网络环境和P2P环境中,客户端向OLAP服务器提交OLAP查询,并从服务器获取查询结果,OLAP服务器的负载将随着客户端的增加而急剧增加。设计了一种基于P2P(Peer-to-Peer,点对点技术)技术的DQDC(Distributed Query Data Cube,多维数据集...传统网络环境和P2P环境中,客户端向OLAP服务器提交OLAP查询,并从服务器获取查询结果,OLAP服务器的负载将随着客户端的增加而急剧增加。设计了一种基于P2P(Peer-to-Peer,点对点技术)技术的DQDC(Distributed Query Data Cube,多维数据集的分布式查询)算法,实现P2P网络中语义级的多节点Data Cube数据共享,从而提高系统整体的决策分析性能。展开更多
基金This work was supported by Science and Technology Project of State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .
文摘Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri Lanka.This is initially developed for the tree species called‘Hora’(Dipterocarpus zeylanicus)in wet zone of Sri Lanka.Here the core samples are extracted and further analyzed by means of the different image processing techniques such as Gaussian kernel blurring,use of Sobel filters,double threshold analysis,Hough line tran sformation and etc.The operations such as rescaling,slicing and measuring are also used in line with image processing techniques to achieve the desired results.Ultimately a Graphical user interface(GUI)is developed to cater for the user requirements in a user friendly environment.It has been found that the average growth ring identification accuracy of the proposed system is 93%and the overall average accuracy of detecting the age is 81%.Ultimately the proposed system will provide an insight and contributes to the forestry related activities and researches in Sri Lanka.
文摘“Industry 4.0” has become the future direction of manufacturing industry. To prepare for this upgrade, it is important to study the automation of semiconductor failure analysis. In this paper, the sample polishing activity was studied for upgrading to a smart polishing process. Two major issues were identified in implementing the smart polishing process: the optimization of current polishing recipes and the capability of making decisions based on live feedback. With the help of Solver add-in, the current polishing recipes were optimized. To make decisions based on live images captured during polishing, strategies were explored based on finger polishing process study. Our investigation showed that a grey scale line profile analysis on images can be used to build the vision capability of our smart polishing system, on which a decision- making capability can be developed.
文摘传统网络环境和P2P环境中,客户端向OLAP服务器提交OLAP查询,并从服务器获取查询结果,OLAP服务器的负载将随着客户端的增加而急剧增加。设计了一种基于P2P(Peer-to-Peer,点对点技术)技术的DQDC(Distributed Query Data Cube,多维数据集的分布式查询)算法,实现P2P网络中语义级的多节点Data Cube数据共享,从而提高系统整体的决策分析性能。