Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summariz...Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summarized in this paper. It also has covered three fouling resistance models and four kinds of approaches to improve membrane performance. Membrane cleaning methods are also discussed including physical, chemical, physico\|chemical and biological methods. In the four groups of basic cleaning methods, biological cleaning has considerable advantages and potentials. Extensive research work should be carried out further to explore and develop new ideas and techniques in the field of membrane cleaning and restoration.展开更多
Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and ...Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.展开更多
The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile...The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile is observed as time passes. The initially extended period of slow pressure rise, followed by a somewhat faster rise, is then sup- planted by a sudden transition to rapid pressure rise. Membrane cleaning experiments and SEM examination make it apparent that the rapid TMP rise is mainly caused by the accumulation of a surface cake layer, which is a reversible fouling that can be removed by tap water washing. Fouling caused by a gel layer, which is an irreversible fouling, can be removed efficiently by chemical cleaning. NaC10 can oxidize the gel layer, which is formed mainly of macromo-lecular organic substances. The HC1 can remove inorganic particles formed by Ca^2+, Mg^2+ ions etc. The sequence of chemicals used in membrane cleaning has an influence on the cleaning result. The effect of the NaC1O+HC1 cleaning procedure is superior to that of the HCI+NaC1O one. Particle size distribution measurements (PSD) reveal that fine particles are inclined to deposit or attach on the membrane surface, or in the membrane pores, and caused rapid fouling.展开更多
Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydis...Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.展开更多
文摘Membrane fouling curtails severely the economical and practical implementation of membrane process. The fundamental principles and mechanisms of membrane fouling as well as factors affecting fouling have been summarized in this paper. It also has covered three fouling resistance models and four kinds of approaches to improve membrane performance. Membrane cleaning methods are also discussed including physical, chemical, physico\|chemical and biological methods. In the four groups of basic cleaning methods, biological cleaning has considerable advantages and potentials. Extensive research work should be carried out further to explore and develop new ideas and techniques in the field of membrane cleaning and restoration.
基金financially supported by the National Natural Science Foundation of China(21921006).
文摘Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.
基金Projects 200457 supported by the Planning Foundation of Hebei Water Conservancy Bureau in ChinaOP4476 by the Youth Foundation of China Univer- sity of Mining & Technology
文摘The characteristics of membrane fouling and cleaning, in a hybrid MBR process, was investigated. Under the condition of sub-critical flux operation, a characteristic three-stage trans-membrane pressure (TMP) profile is observed as time passes. The initially extended period of slow pressure rise, followed by a somewhat faster rise, is then sup- planted by a sudden transition to rapid pressure rise. Membrane cleaning experiments and SEM examination make it apparent that the rapid TMP rise is mainly caused by the accumulation of a surface cake layer, which is a reversible fouling that can be removed by tap water washing. Fouling caused by a gel layer, which is an irreversible fouling, can be removed efficiently by chemical cleaning. NaC10 can oxidize the gel layer, which is formed mainly of macromo-lecular organic substances. The HC1 can remove inorganic particles formed by Ca^2+, Mg^2+ ions etc. The sequence of chemicals used in membrane cleaning has an influence on the cleaning result. The effect of the NaC1O+HC1 cleaning procedure is superior to that of the HCI+NaC1O one. Particle size distribution measurements (PSD) reveal that fine particles are inclined to deposit or attach on the membrane surface, or in the membrane pores, and caused rapid fouling.
基金supported by the Natural Science Foundation of China(Nos.52070081,51578258 and 51878308)the National Key Research and Development Program of China(No.2022YFC3203500)。
文摘Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.