The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET p...The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.展开更多
【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。...【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。【方法】用生物信息学方法对枸杞SWEET基因(LbaSWEETs)进行全基因组鉴定,并用已发表的转录数据分析LbaSWEETs在果实发育时期的基因表达情况。【结果】枸杞SWEET基因家族共有37个成员,随机分布于10条染色体上,分别编码152~621个氨基酸,蛋白质分子质量为16.87~69.97 kD,等电点为4.96~9.86。亚细胞定位预测位于叶绿体或质膜,大多数含有7个跨膜螺旋。系统进化分析发现,37个LbaSWEETs蛋白可分为4个亚群,每个亚群的基因结构和保守基序组成相似。启动子元件分析表明:Lba-SWEETs基因启动子富含大量激素响应、逆境胁迫和生长发育响应元件。转录组数据和qRT-PCR分析表明:LbaSWEET9和LbaSWEET29基因表达量随果实成熟呈现显著增加。相关性分析结果表明,LbaSWEET9和LbaSWEET29基因表达量与果糖含量呈显著正相关。【结论】LbaSWEET9和LbaSWEET29基因是果糖积累的关键基因。展开更多
Sugar transportation and sugar-to-starch metabolism are considered important processes in seed development and embryo viability.A few plant SWEET proteins acting as sugar transporters have been reported to function in...Sugar transportation and sugar-to-starch metabolism are considered important processes in seed development and embryo viability.A few plant SWEET proteins acting as sugar transporters have been reported to function in inflorescence and/or seed development.Here,we identified seven members of the 21 Os SWEET genes in rice that play essential roles in sugar transportation and sugar-to-starch conversion in seed development.Nineteen Os SWEET genes exhibiting different expression patterns during inflorescence and seed development were knocked out individually by CRISPR/Cas9.One third of the mutants showed decreased fertile pollen viability and shriveled mature caryopses,resulting in weakened seed traits.Grain fill-related genes but not representative grain shape-regulating genes showed attenuated expression in the mutants.Seed of each of these mutants accumulated more sucrose,glucose or fructose but less starch.Among all Os SWEET genes,Os SWEET4 and Os SWEET11 had major effects on caryopsis development.The sugar-to-starch metabolic pathway was significantly altered in ossweet11 mutants based on differential expression analysis in RNA sequencing assays,confirming that Os SWEET11 functions as a sugar transporter with a key role in seed development.These results help to decipher the multiple functions of Os SWEET genes and to show how they might be used in genetic improvement of rice.展开更多
Sugars,especially glucose and fructose,contribute to the taste and quality of tomato fruits.These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporter...Sugars,especially glucose and fructose,contribute to the taste and quality of tomato fruits.These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporters at the plasma membrane.SWEETs,are sugar transporters that regulate sugar efflux independently of energy or pH.To date,the role of SWEETs in tomato has received very little attention.In this study,we performed functional analysis of SlSWEET7a and SlSWEET14 to gain insight into the regulation of sugar transport and storage in tomato fruits.SlSWEET7a and SlSWEET14 were mainly expressed in peduncles,vascular bundles,and seeds.Both SlSWEET7a and SlSWEET14 are plasma membrane-localized proteins that transport fructose,glucose,and sucrose.Apart from the resulting increase in mature fruit sugar content,silencing SlSWEET7a or SlSWEET14 resulted in taller plants and larger fruits(in SlSWEET7a-silenced lines).We also found that invertase activity and gene expression of some SlSWEET members increased,which was consistent with the increased availability of sucrose and hexose in the fruits.Overall,our results demonstrate that suppressing SlSWEET7a and SlSWEET14 could be a potential strategy for enhancing the sugar content of tomato fruits.展开更多
The sugar components and their dynamic variation in the developing grains of sweet corn(Zea mays L. seccharata Sturt)and normal corn (Zea mays L. indentata Sturt) were compared. There are WSP (water-soluble polysaccha...The sugar components and their dynamic variation in the developing grains of sweet corn(Zea mays L. seccharata Sturt)and normal corn (Zea mays L. indentata Sturt) were compared. There are WSP (water-soluble polysaccharides), sucrose, fructose, glucose, mannitol and sorbitol in both sweet corn and normal corn, but no maltose. Two components with different degrees of polymerization (D. P. N) were detected in the sweet corn; only one of them was detected in the normal corn 20 days after pollination. With the development of grains, the total soluble sugar content(TSS)in sweet corn increased, but in normal corn it decreased. The dynamic variation of WSP, sucrose, glucose, fructose, mannitol and sorbitol in sweet and normal corn grains are different. The contents of sugar components in the sweet corn grains are higher than that in the normal corn. Sweet corn accumulates less starch than normal corn.展开更多
SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋...SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋白在多种生理和生化过程中发挥着关键作用,包括韧皮部装载、激素运输、营养和生殖生长等。结合当前SWEET转运蛋白的研究进展,重点总结了SWEET的发现、蛋白结构及其在糖转运中的生物学功能,指出目前植物SWEET基因研究面临的问题,并对未来SWEET蛋白的研究重点进行了展望:1)探究SWEET蛋白的底物识别机制;2)挖掘提高作物产量和品质的关键SWEET基因;3)利用SWEET基因编辑和磷酸化等策略改良作物产量和品质。展开更多
Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits i...Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits in sweet sorghum was introduced, and the analysis content of the genetic breeding of sweet sorghum related to sugar traits was expounded, providing support for the cultivation of sweet sorghum with higher quality and the promotion of agricultural development in China.展开更多
Alternative and renewable bio-based energy sources are gaining prominence worldwide. Sweet sorghum is currently being evaluated throughout the world because its stem juices are rich in sugars that can be directly ferm...Alternative and renewable bio-based energy sources are gaining prominence worldwide. Sweet sorghum is currently being evaluated throughout the world because its stem juices are rich in sugars that can be directly fermented to ethanol. In this two-year study, sweet sorghum varieties;Dale, Theis, Topper 76-6, and M81E (Obtained from Mississippi State University Experiment Station, MS) and CHR-SW8 (Obtained from Chromatin Inc., IL) were used. Nitrogen (N) fertilizer rates of 0, 40, 80 or 120 kg·N·ha-1 were applied to experimental units. The experiment was a randomized complete block design with treatments in a split-split plot arrangement with three replications. Nitrogen rate was the main plot, cultivar as sub-plot, and panicle removal as sub-plot. Results showed that N application increased fresh stem yield, juice volume, but had minimal effect on juice soluble sugar concentration. Compared to controls, application of ≥40 kg·N·ha-1 increased fresh yield and juice by >60% and 10%, respectively. There were also variety differences in harvested fresh biomass, juice volume and oBrix, and soluble sugar content. Dale and Theis consistently showed lower sucrose compared to other varieties over the two years. Panicle removal during early reproductive phase increased oBrix, sucrose and total sugar content in all varieties. Across the two years of study, panicle removal increased oBrix by more than 10%, sucrose and total sugar increased by more than 20%. Selection of varieties that produce high juice volume with high sugar content and strategies to inhibit seed formation may result in improved juice quality.展开更多
SWEET(sugars will eventually be exported transporter)基因家族是一类新型的糖转运蛋白,可顺浓度梯度对糖分进行双向跨膜运输。SWEET在植物光合同化物韧皮部装载、蜜腺花蜜分泌、种子灌浆、花粉发育、病原菌互作、逆境调控等过程中...SWEET(sugars will eventually be exported transporter)基因家族是一类新型的糖转运蛋白,可顺浓度梯度对糖分进行双向跨膜运输。SWEET在植物光合同化物韧皮部装载、蜜腺花蜜分泌、种子灌浆、花粉发育、病原菌互作、逆境调控等过程中起着关键作用,近年来受到广泛关注。尽管SWEET广泛存在于植物中,但目前对其功能研究主要集中在水稻和拟南芥上。介绍了SWEET基因家族的发现、蛋白结构特征、生理功能及逆境调控的最新研究进展,有助于将来对SWEET基因家族进行更深入和全面的研究。展开更多
Objective] The purpose of this study was to evaluate the effects of five variables (steaming time, moisture content before inoculation, inoculation amount, fer-mentation temperature, fermentation time) on the sweetn...Objective] The purpose of this study was to evaluate the effects of five variables (steaming time, moisture content before inoculation, inoculation amount, fer-mentation temperature, fermentation time) on the sweetness of sweet oats, obtained the best fermentation conditions. [Method] Plackett-Burman (PB) was to evaluate the effects of five variables, and selected significant factors. The steepest ascent was used to approach the optimal response surface experimental area. The optimal fer-mentation condition was obtained by central composite design and response surface analysis. [Results] It was indicated that moisture content, inoculation amount and fer-mentation temperature had significant influences on the content of the reducing sugars. The optimal conditions of moisture content, inoculation amount and temper-ature were 45.26%, 0.014%(g/g) and 28 ℃, respectively. The predicted value of the reducing sugar content was 13.16 mg/g. [Conclusion] Under the optimal conditions, the content of the reducing sugars in the sweet oats could be up to 12.91 mg/g, which was on the whole consistent with the predictive maximum value.展开更多
糖转运蛋白(sugar will eventually be exported transporter,SWEET)在植物运输糖类、生殖和发育、逆境性、与病原体互作等方面发挥着重要作用。选择木薯糖转运蛋白Mesweet18基因沉默的靶基因区域,通过病毒诱导的基因沉默(virus-induced...糖转运蛋白(sugar will eventually be exported transporter,SWEET)在植物运输糖类、生殖和发育、逆境性、与病原体互作等方面发挥着重要作用。选择木薯糖转运蛋白Mesweet18基因沉默的靶基因区域,通过病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术注射木薯SC9的盆栽苗叶片。qRT-PCR结果表明,Mesweet18在沉默植株中的表达量显著下调,分别是对照的46.80%、30.23%、21.12%。叶片叶绿素和可溶性糖含量检测结果表明,与对照相比,叶绿素a、b和总含量均出现不同程度的下降,蔗糖和果糖含量显著增加,而葡萄糖含量出现轻微下降。研究Mesweet18在木薯中的分子功能,为深入研究糖转运蛋白SWEET在木薯中的分子机制奠定了基础。展开更多
SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the p...SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the plant SWEETgene family have been functionally identified. Up till now, there has been no systematic analysis of the SWEETgene family in Cucurbitaceae crops. Here, a genome-wide characterization of this family was conducted in cucumber(Cucumis sativus L.). A total of 17 CsSWEETgenes were identified, which are not evenly distributed over the seven cucumber chromosomes. Cucumber SWEET protein sequences possess seven conserved domains and two putative serine phosphorylation sites. The phylo- genetic tree of the SWEET genes in cucumber, Arabidopsis thaliana, and Oryza sativa was constructed, and all the SWEET genes were divided into four clades. In addition, a number of putative cis-elements were identified in the promoter regions of these CsSWEET genes: nine types involved in phytohormone responses and eight types involved in stress responses. Moreover, the transcript levels of CsSWEETgenes were analyzed in various tissues using quantitative real-time polymerase chain reaction. A majority (70.58%) of the CsSWEET genes were confined to reproductive tissue development. Finally, 18 putative watermelon ClaSWEETgenes and 18 melon CmSWEETgenes were identified that showed a high degree of similarity with CsSWEETgenes. The results from this study provided a basic understanding of the CsSWEETgenes and may also facilitate future research to elucidate the function of SWEET genes in cucumber and other Cucurbitaceae crops.展开更多
The exocarp,or skin,of fleshy fruit is a specialized tissue that protects the fruit,attracts seed dispersing fruit eaters,and has large economical relevance for fruit quality.Development of the exocarp involves regula...The exocarp,or skin,of fleshy fruit is a specialized tissue that protects the fruit,attracts seed dispersing fruit eaters,and has large economical relevance for fruit quality.Development of the exocarp involves regulated activities of many genes.This research analyzed global gene expression in the exocarp of developing sweet cherry(Prunus avium L.,‘Regina’),a fruit crop species with little public genomic resources.A catalog of transcript models(contigs)representing expressed genes was constructed from de novo assembled short complementary DNA(cDNA)sequences generated from developing fruit between flowering and maturity at 14 time points.Expression levels in each sample were estimated for 34695 contigs from numbers of reads mapping to each contig.Contigs were annotated functionally based on BLAST,gene ontology and InterProScan analyses.Coregulated genes were detected using partitional clustering of expression patterns.The results are discussed with emphasis on genes putatively involved in cuticle deposition,cell wall metabolism and sugar transport.The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families.Moreover,the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20000 other,annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.展开更多
甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SW...甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。展开更多
Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in...Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.展开更多
基金funded by the Fujian Provincial Science and Technology Project(2021N5014,2022N5006)the Key Research Project of the Putian Science and Technology Bureau(2021ZP08,2021ZP09,2021ZP10,2021ZP11,2023GJGZ001).
文摘The SWEET(sugar will eventually be exported transporter)family proteins are a recently identified class of sugar transporters that are essential for various physiological processes.Although the functions of the SWEET proteins have been identified in a number of species,to date,there have been no reports of the functions of the SWEET genes in woodland strawberries(Fragaria vesca).In this study,we identified 15 genes that were highly homolo-gous to the A.thaliana AtSWEET genes and designated them as FvSWEET1–FvSWEET15.We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes.The phylogenetic analysis enabled us to categor-ize the predicted 15 SWEET proteins into four distinct groups.We observed slight variations in the exon‒intron structures of these genes,while the motifs and domain structures remained highly conserved.Additionally,the developmental and biological stress expression profiles of the 15 FvSWEET genes were extracted and analyzed.Finally,WGCNA coexpression network analysis was run to search for possible interacting genes of FvSWEET genes.The results showed that the FvSWEET10 genes interacted with 20 other genes,playing roles in response to bacterial and fungal infections.The outcomes of this study provide insights into the further study of FvSWEET genes and may also aid in the functional characterization of the FvSWEET genes in woodland strawberries.
文摘【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。【方法】用生物信息学方法对枸杞SWEET基因(LbaSWEETs)进行全基因组鉴定,并用已发表的转录数据分析LbaSWEETs在果实发育时期的基因表达情况。【结果】枸杞SWEET基因家族共有37个成员,随机分布于10条染色体上,分别编码152~621个氨基酸,蛋白质分子质量为16.87~69.97 kD,等电点为4.96~9.86。亚细胞定位预测位于叶绿体或质膜,大多数含有7个跨膜螺旋。系统进化分析发现,37个LbaSWEETs蛋白可分为4个亚群,每个亚群的基因结构和保守基序组成相似。启动子元件分析表明:Lba-SWEETs基因启动子富含大量激素响应、逆境胁迫和生长发育响应元件。转录组数据和qRT-PCR分析表明:LbaSWEET9和LbaSWEET29基因表达量随果实成熟呈现显著增加。相关性分析结果表明,LbaSWEET9和LbaSWEET29基因表达量与果糖含量呈显著正相关。【结论】LbaSWEET9和LbaSWEET29基因是果糖积累的关键基因。
基金supported by the National Natural Science Foundation of China(31821005,31822042,and 31871946)the Natural Science Foundation of Hubei Province(2020CFA058)the Fundamental Research Funds for the Central Universities(2662019FW006)。
文摘Sugar transportation and sugar-to-starch metabolism are considered important processes in seed development and embryo viability.A few plant SWEET proteins acting as sugar transporters have been reported to function in inflorescence and/or seed development.Here,we identified seven members of the 21 Os SWEET genes in rice that play essential roles in sugar transportation and sugar-to-starch conversion in seed development.Nineteen Os SWEET genes exhibiting different expression patterns during inflorescence and seed development were knocked out individually by CRISPR/Cas9.One third of the mutants showed decreased fertile pollen viability and shriveled mature caryopses,resulting in weakened seed traits.Grain fill-related genes but not representative grain shape-regulating genes showed attenuated expression in the mutants.Seed of each of these mutants accumulated more sucrose,glucose or fructose but less starch.Among all Os SWEET genes,Os SWEET4 and Os SWEET11 had major effects on caryopsis development.The sugar-to-starch metabolic pathway was significantly altered in ossweet11 mutants based on differential expression analysis in RNA sequencing assays,confirming that Os SWEET11 functions as a sugar transporter with a key role in seed development.These results help to decipher the multiple functions of Os SWEET genes and to show how they might be used in genetic improvement of rice.
基金This research was supported by the National Key Research and Development Program of China(2019YFD100030)the National Natural Science Foundation of China(No.31372054).
文摘Sugars,especially glucose and fructose,contribute to the taste and quality of tomato fruits.These compounds are translocated from the leaves to the fruits and then unloaded into the fruits by various sugar transporters at the plasma membrane.SWEETs,are sugar transporters that regulate sugar efflux independently of energy or pH.To date,the role of SWEETs in tomato has received very little attention.In this study,we performed functional analysis of SlSWEET7a and SlSWEET14 to gain insight into the regulation of sugar transport and storage in tomato fruits.SlSWEET7a and SlSWEET14 were mainly expressed in peduncles,vascular bundles,and seeds.Both SlSWEET7a and SlSWEET14 are plasma membrane-localized proteins that transport fructose,glucose,and sucrose.Apart from the resulting increase in mature fruit sugar content,silencing SlSWEET7a or SlSWEET14 resulted in taller plants and larger fruits(in SlSWEET7a-silenced lines).We also found that invertase activity and gene expression of some SlSWEET members increased,which was consistent with the increased availability of sucrose and hexose in the fruits.Overall,our results demonstrate that suppressing SlSWEET7a and SlSWEET14 could be a potential strategy for enhancing the sugar content of tomato fruits.
文摘The sugar components and their dynamic variation in the developing grains of sweet corn(Zea mays L. seccharata Sturt)and normal corn (Zea mays L. indentata Sturt) were compared. There are WSP (water-soluble polysaccharides), sucrose, fructose, glucose, mannitol and sorbitol in both sweet corn and normal corn, but no maltose. Two components with different degrees of polymerization (D. P. N) were detected in the sweet corn; only one of them was detected in the normal corn 20 days after pollination. With the development of grains, the total soluble sugar content(TSS)in sweet corn increased, but in normal corn it decreased. The dynamic variation of WSP, sucrose, glucose, fructose, mannitol and sorbitol in sweet and normal corn grains are different. The contents of sugar components in the sweet corn grains are higher than that in the normal corn. Sweet corn accumulates less starch than normal corn.
文摘SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋白在多种生理和生化过程中发挥着关键作用,包括韧皮部装载、激素运输、营养和生殖生长等。结合当前SWEET转运蛋白的研究进展,重点总结了SWEET的发现、蛋白结构及其在糖转运中的生物学功能,指出目前植物SWEET基因研究面临的问题,并对未来SWEET蛋白的研究重点进行了展望:1)探究SWEET蛋白的底物识别机制;2)挖掘提高作物产量和品质的关键SWEET基因;3)利用SWEET基因编辑和磷酸化等策略改良作物产量和品质。
文摘Sweet sorghum is a crop with good application prospects, and the research on sweet sorghum breeding people should be strengthened. Based on this, the genetic content of QTLs(quantitative trait loci) for sugar traits in sweet sorghum was introduced, and the analysis content of the genetic breeding of sweet sorghum related to sugar traits was expounded, providing support for the cultivation of sweet sorghum with higher quality and the promotion of agricultural development in China.
文摘Alternative and renewable bio-based energy sources are gaining prominence worldwide. Sweet sorghum is currently being evaluated throughout the world because its stem juices are rich in sugars that can be directly fermented to ethanol. In this two-year study, sweet sorghum varieties;Dale, Theis, Topper 76-6, and M81E (Obtained from Mississippi State University Experiment Station, MS) and CHR-SW8 (Obtained from Chromatin Inc., IL) were used. Nitrogen (N) fertilizer rates of 0, 40, 80 or 120 kg·N·ha-1 were applied to experimental units. The experiment was a randomized complete block design with treatments in a split-split plot arrangement with three replications. Nitrogen rate was the main plot, cultivar as sub-plot, and panicle removal as sub-plot. Results showed that N application increased fresh stem yield, juice volume, but had minimal effect on juice soluble sugar concentration. Compared to controls, application of ≥40 kg·N·ha-1 increased fresh yield and juice by >60% and 10%, respectively. There were also variety differences in harvested fresh biomass, juice volume and oBrix, and soluble sugar content. Dale and Theis consistently showed lower sucrose compared to other varieties over the two years. Panicle removal during early reproductive phase increased oBrix, sucrose and total sugar content in all varieties. Across the two years of study, panicle removal increased oBrix by more than 10%, sucrose and total sugar increased by more than 20%. Selection of varieties that produce high juice volume with high sugar content and strategies to inhibit seed formation may result in improved juice quality.
文摘SWEET(sugars will eventually be exported transporter)基因家族是一类新型的糖转运蛋白,可顺浓度梯度对糖分进行双向跨膜运输。SWEET在植物光合同化物韧皮部装载、蜜腺花蜜分泌、种子灌浆、花粉发育、病原菌互作、逆境调控等过程中起着关键作用,近年来受到广泛关注。尽管SWEET广泛存在于植物中,但目前对其功能研究主要集中在水稻和拟南芥上。介绍了SWEET基因家族的发现、蛋白结构特征、生理功能及逆境调控的最新研究进展,有助于将来对SWEET基因家族进行更深入和全面的研究。
基金Major science and technology projects in jiangxi province(2010ZX0100)Basic scientific research business expenses Incremental projects of Chinese academy of agricultural sciences(2013ZL013)~~
文摘Objective] The purpose of this study was to evaluate the effects of five variables (steaming time, moisture content before inoculation, inoculation amount, fer-mentation temperature, fermentation time) on the sweetness of sweet oats, obtained the best fermentation conditions. [Method] Plackett-Burman (PB) was to evaluate the effects of five variables, and selected significant factors. The steepest ascent was used to approach the optimal response surface experimental area. The optimal fer-mentation condition was obtained by central composite design and response surface analysis. [Results] It was indicated that moisture content, inoculation amount and fer-mentation temperature had significant influences on the content of the reducing sugars. The optimal conditions of moisture content, inoculation amount and temper-ature were 45.26%, 0.014%(g/g) and 28 ℃, respectively. The predicted value of the reducing sugar content was 13.16 mg/g. [Conclusion] Under the optimal conditions, the content of the reducing sugars in the sweet oats could be up to 12.91 mg/g, which was on the whole consistent with the predictive maximum value.
文摘糖转运蛋白(sugar will eventually be exported transporter,SWEET)在植物运输糖类、生殖和发育、逆境性、与病原体互作等方面发挥着重要作用。选择木薯糖转运蛋白Mesweet18基因沉默的靶基因区域,通过病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术注射木薯SC9的盆栽苗叶片。qRT-PCR结果表明,Mesweet18在沉默植株中的表达量显著下调,分别是对照的46.80%、30.23%、21.12%。叶片叶绿素和可溶性糖含量检测结果表明,与对照相比,叶绿素a、b和总含量均出现不同程度的下降,蔗糖和果糖含量显著增加,而葡萄糖含量出现轻微下降。研究Mesweet18在木薯中的分子功能,为深入研究糖转运蛋白SWEET在木薯中的分子机制奠定了基础。
基金supported by the National Natural Science Foundation of China (31301792)the Beijing Natural Science Foundation, China (6142010)the Youth Scientific Research Funds of the Beijing Academy of Agriculture and Forestry Sciences, China (QNJJ201401)
文摘SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the plant SWEETgene family have been functionally identified. Up till now, there has been no systematic analysis of the SWEETgene family in Cucurbitaceae crops. Here, a genome-wide characterization of this family was conducted in cucumber(Cucumis sativus L.). A total of 17 CsSWEETgenes were identified, which are not evenly distributed over the seven cucumber chromosomes. Cucumber SWEET protein sequences possess seven conserved domains and two putative serine phosphorylation sites. The phylo- genetic tree of the SWEET genes in cucumber, Arabidopsis thaliana, and Oryza sativa was constructed, and all the SWEET genes were divided into four clades. In addition, a number of putative cis-elements were identified in the promoter regions of these CsSWEET genes: nine types involved in phytohormone responses and eight types involved in stress responses. Moreover, the transcript levels of CsSWEETgenes were analyzed in various tissues using quantitative real-time polymerase chain reaction. A majority (70.58%) of the CsSWEET genes were confined to reproductive tissue development. Finally, 18 putative watermelon ClaSWEETgenes and 18 melon CmSWEETgenes were identified that showed a high degree of similarity with CsSWEETgenes. The results from this study provided a basic understanding of the CsSWEETgenes and may also facilitate future research to elucidate the function of SWEET genes in cucumber and other Cucurbitaceae crops.
基金The authors thank the Deutsche Forschungsgemeinschaft for financial support(Grant AL1373_1-1)Thorben Sprink for sampling of the fruit and isolation of RNA for the RNA-seq analyses.
文摘The exocarp,or skin,of fleshy fruit is a specialized tissue that protects the fruit,attracts seed dispersing fruit eaters,and has large economical relevance for fruit quality.Development of the exocarp involves regulated activities of many genes.This research analyzed global gene expression in the exocarp of developing sweet cherry(Prunus avium L.,‘Regina’),a fruit crop species with little public genomic resources.A catalog of transcript models(contigs)representing expressed genes was constructed from de novo assembled short complementary DNA(cDNA)sequences generated from developing fruit between flowering and maturity at 14 time points.Expression levels in each sample were estimated for 34695 contigs from numbers of reads mapping to each contig.Contigs were annotated functionally based on BLAST,gene ontology and InterProScan analyses.Coregulated genes were detected using partitional clustering of expression patterns.The results are discussed with emphasis on genes putatively involved in cuticle deposition,cell wall metabolism and sugar transport.The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families.Moreover,the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20000 other,annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.
文摘甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。
基金supported by the The National Key ResearchDevelopment Program of China(2016YFD0101400,2017YFD0101600)
文摘Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.