The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-bran...The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.展开更多
Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method fo...Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.展开更多
In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake d...In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.展开更多
A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The gene...A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.展开更多
In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-differenc...In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant...In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.展开更多
In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bu...In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bulkiness, placed one above the other at a distance of h<sub>2</sub> equal to the thickness of the thick conductor. This approach has been implemented and tested by the iterative method. The results of simulations have been compared with those calculated by the Ansoft HFSS software, and they are in good concordance, validating the method of analysis used. The second model is based on the calculation of the effective permittivity of the medium containing the thick conductor. This medium consists of a metallic region of complex relative permittivity , the rest of this medium is filled with air e<sub>r</sub><sub>2</sub> = 1. The effective permittivity e<sub>eff</sub> calculated from these two relative permittivity e<sub>r</sub><sub>2</sub> and . Comparing the simulation results of this new formulation of the iterative method with those calculated by the software Ansoft HFSS shows that they are in good matching which validates the second model.展开更多
At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line...At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.展开更多
Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions...Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.展开更多
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o...Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.展开更多
A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and d...A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach.展开更多
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ...We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.展开更多
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic...Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.展开更多
In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our alg...In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.展开更多
The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumptio...The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.展开更多
This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution ...This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution of slip-line is established based on the plastic streamline. Theextrusion force of plastic moulding of the steel helmet is calculated by using of slip-line method.Furthermore, an applied example is given.展开更多
A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金This work was funded by the project of State Grid Hunan Electric Power Research Institute(No.SGHNDK00PWJS2210033).
文摘The distribution network exhibits complex structural characteristics,which makes fault localization a challenging task.Especially when a branch of the multi-branch distribution network fails,the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system.In this paper,the multi-branch mainline is decomposed into single branch lines,transforming the complex multi-branch fault location problem into a double-ended fault location problem.Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines,the endpoint reference time difference matrix S and the fault time difference matrix G were established.The time variation rule of the fault-traveling wave arriving at each endpoint before and after a fault was comprehensively utilized.To realize the fault segment location,the least square method was introduced.It was used to find the first-order fitting relation that satisfies the matching relationship between the corresponding row vector and the first-order function in the two matrices,to realize the fault segment location.Then,the time difference matrix is used to determine the traveling wave velocity,which,combined with the double-ended traveling wave location,enables accurate fault location.
基金supported by National Natural Science Foundation of China(Grant No.51135008)National Basic Research Program of China(973 Program,Grant No.2013CB035400)China Postdoctoral Science Foundation(Grant Nos.2012M520256,2013T60107)
文摘Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金Project supported by the National Key Research and Development Program of China(Nos.2019YFE0192600,2017YFE0132000,and 2019YFB1503700)the National Natural Science Foundation of China(Nos.51761135012 and 11872248)。
文摘In a large wind farm,the wakes of upstream and downstream wind turbines can interfere with each other,affecting the overall power output of the wind farm.To further improve the numerical accuracy of the turbine wake dynamics under atmosphere turbulence,this work proposes some improvements to the actuator line-large-eddy simulation(AL-LES)method.Based on the dynamic k-equation large-eddy simulation(LES),this method uses a precursor method to generate atmospheric inflow turbulence,models the tower and nacelle wakes,and improves the body force projection method based on an anisotropic Gaussian distribution function.For these three improvements,three wind tunnel experiments are used to validate the numerical accuracy of this method.The results show that the numerical results calculated in the far-wake region can reflect the characteristics of typical onshore and offshore wind conditions compared with the experimental results.After modeling the tower and nacelle wakes,the wake velocity distribution is consistent with the experimental result.The radial migration velocity of the tip vortex calculated by the improved blade body force distribution model is 0.32 m/s,which is about 6%different from the experimental value and improves the prediction accuracy of the tip vortex radial movement.The method proposed in this paper is very helpful for wind turbine wake dynamic analysis and wind farm power prediction.
基金supported by the National Natural Science Foundation of China (10672193)Sun Yat-sen University (Fu Lan Scholarship)the University of Hong Kong (CRGC grant).
文摘A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.
文摘In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
基金supported by the National Natural Science Foundation of China (60533060, 10672032, 10726067)Science Foundation of Dalian University of Technology (SFDUT07001)
文摘In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.
文摘In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bulkiness, placed one above the other at a distance of h<sub>2</sub> equal to the thickness of the thick conductor. This approach has been implemented and tested by the iterative method. The results of simulations have been compared with those calculated by the Ansoft HFSS software, and they are in good concordance, validating the method of analysis used. The second model is based on the calculation of the effective permittivity of the medium containing the thick conductor. This medium consists of a metallic region of complex relative permittivity , the rest of this medium is filled with air e<sub>r</sub><sub>2</sub> = 1. The effective permittivity e<sub>eff</sub> calculated from these two relative permittivity e<sub>r</sub><sub>2</sub> and . Comparing the simulation results of this new formulation of the iterative method with those calculated by the software Ansoft HFSS shows that they are in good matching which validates the second model.
文摘At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.
基金supported by the National Natural Science Foundation of China(11001037,11102037 and 11290143)the Fundamental Research Funds for the Central Universities
文摘Isoparametric quadrilateral elements are widely used in the finite element method, but the accuracy of the isoparametric quadrilateral elements will drop obviously deteriorate due to mesh distortions. Spline functions have some properties of simplicity and conformality. Two 8-node quadrilateral elements have been developed using the trian- gular area coordinates and the B-net method, which can ex- actly model the quadratic field for both convex and concave quadrangles. Some appropriate examples are employed to evaluate the performance of the proposed elements. The nu- merical results show that the two spline elements can obtain solutions which are highly accurate and insensitive to mesh distortions.
基金supported by National Natural Science Foundation of China (Grant No. 50675145)Shanxi Provincial Key Project of Science and Technology of China (Grant No. 2006031147)+1 种基金Shanxi Provincial Innovation Project for Graduate Students of China (Grant No. 20061027)Shanxi Provincial Key Project for Studied-abroad Returnee of China
文摘Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.
基金This work is supported in part by NSF of China, N.10471095, SF of Shanghai N.04JC14062, The Fund of ChineseEducation Ministry N.20040270002, The Shanghai Leading Academic Discipline Project N. T0401, The Funds forE-institutes of Universities N.E03004 and The special Funds for Major Specialities and N.04DB15 of ShanghaiEducation Commission.
文摘A Legendre rational spectral method is proposed for the nonlinear Klein-Gordon equation on the whole line. Its stability and convergence are proved. Numerical results coincides well with the theoretical analysis and demonstrate the e?ciency of this approach.
基金supported by the Scientific Commission/ENS/University of Maroua 2013AM is grateful to the Abdus Salam International Center for Theoretical Physics(ICTP),Trieste,Italy through the Associate Program for financial support
文摘We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.
基金Project supported by the National Natural Sciences Foundation of China(Nos.59525813 and 19872066)the Cardiff Advanced Chinese Engineering Centre of Cardiff University.
文摘Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
文摘In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.
基金Sponsored by Natural Science Foundation of Beijing Municipal Commission of Education(Grant No.KM200510028019).
文摘The non-quasi-Newton methods for unconstrained optimization was investigated. Non-monotone line search procedure is introduced, which is combined with the non-quasi-Newton family. Under the uniform convexity assumption on objective function, the global convergence of the non-quasi-Newton family was proved. Numerical experiments showed that the non-monotone line search was more effective.
文摘This paper presents the elastic and plastic deformation of the steel helmet with coldextrusion moulding. The plastic streamline of the plastic mould-making process for ellipse thinplate is described. The distribution of slip-line is established based on the plastic streamline. Theextrusion force of plastic moulding of the steel helmet is calculated by using of slip-line method.Furthermore, an applied example is given.
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.