Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product s...Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.展开更多
A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit for detection and semi-quantitation ofpeste des petitis ruminants virus (PPRV) using the virus RNA a...A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit for detection and semi-quantitation ofpeste des petitis ruminants virus (PPRV) using the virus RNA and matrix (M) protein gene-specific primers and compared with established conventional RT-PCR and TaqMan RT-PCR. The assay amplifies a 124 bp fragment of the PPRV M gene with Tm of 78.28 to 78.50. The assay was linear within a range of 50 ng to 0.5 fg total virus RNA with a detection limit (sensitivity) of 0.5 fg. Based on the serial dilution of the live-attenuated PPR vaccine virus, the detection limit was -0.0001 cell culture infectious dose 50% units (TCID50). Additionally, swab materials spiked with known titre of vaccine virus were equally well detected in the assay. The standardized rt RT-PCR was easily employed for the detection of PPRV nucleic acid directly in the field and experimental clinical samples. The assay detected the PPRV nucleic acid as early as 3 day post infection (dpi) and up to 20 dpi in swab materials from the experimental samples. The assay was rapid and more sensitive than TaqMan and conventional RT-PCR in the detection of PPRV nucleic acid from the PPR suspected clinical samples of sheep and goats. Therefore, the established, simplified SYBR green rt RT-PCR is an alternative test to the already existing various diagnostic assays and could be useful for rapid clinical diagnosis with advantage in reducing risk of contamination.展开更多
Classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV) have caused immense economic loss in the pig industry and are considered to be the two most important infectious d...Classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV) have caused immense economic loss in the pig industry and are considered to be the two most important infectious diseases of pigs in the world A multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) was developed for CSFV and PRRSV co-infections or infections, respectively. A set of two pairs of primer was designed based on the sequence of nonstructural protein NS54B of CSFV and ORF7 gene of PRRSV. The diagnostic accuracy of multiplex RT-PCR assay was evaluated by using 56 field clinical samples by multiplex RT-PCR, single RT-PCR and sequence analysis; and the specificity of multiplex PCR was verified by using constructed plasmids containing the specific viral target fragments of PRRSV and CSFV, respectively. The results indicated that this assay could reliably differentiate PRRSV and CSFV in co-infection samples. The multiplex RT-PCR developed in this study might provide a new avenue to the rapid the detection of CSFV and PRRSV in one reaction.展开更多
Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution...Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution of CSFV in different organ samples showed some discrepancies in infected pigs. Four weaner pigs were inoculated with C-strain vaccine virus, then samples of spleen, tonsil, lung, mesenteric lymph node, kidney and brain were collected after slaughter and tested for E2 and NS5B genes using one-step RT-PCR and nested RT-PCR. Using the same method, 12 field cases were simultaneously studied. A discrepancy of CSFV in different samples was found upon detecting the target gene. The most reliable diagnostic organs were spleen and tonsil, and the nested RT-PCR assay provided a highly sensitive and specific method with comparable performance to the one-step RT-PCR assay.展开更多
文摘Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.
基金Indian Council of Agricultural Research,New Delhi,India under Niche Area of Excellence:Production and Quality control of Veterinary Immunodiganostics and immunoprophylactics(F.No.10(11)2005-EP&D.dated 15.12.2005)
文摘A sensitive and rapid single step real time (rt) RT-PCR was standardized using one-step Brilliant SYBR Green kit for detection and semi-quantitation ofpeste des petitis ruminants virus (PPRV) using the virus RNA and matrix (M) protein gene-specific primers and compared with established conventional RT-PCR and TaqMan RT-PCR. The assay amplifies a 124 bp fragment of the PPRV M gene with Tm of 78.28 to 78.50. The assay was linear within a range of 50 ng to 0.5 fg total virus RNA with a detection limit (sensitivity) of 0.5 fg. Based on the serial dilution of the live-attenuated PPR vaccine virus, the detection limit was -0.0001 cell culture infectious dose 50% units (TCID50). Additionally, swab materials spiked with known titre of vaccine virus were equally well detected in the assay. The standardized rt RT-PCR was easily employed for the detection of PPRV nucleic acid directly in the field and experimental clinical samples. The assay detected the PPRV nucleic acid as early as 3 day post infection (dpi) and up to 20 dpi in swab materials from the experimental samples. The assay was rapid and more sensitive than TaqMan and conventional RT-PCR in the detection of PPRV nucleic acid from the PPR suspected clinical samples of sheep and goats. Therefore, the established, simplified SYBR green rt RT-PCR is an alternative test to the already existing various diagnostic assays and could be useful for rapid clinical diagnosis with advantage in reducing risk of contamination.
文摘Classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV) have caused immense economic loss in the pig industry and are considered to be the two most important infectious diseases of pigs in the world A multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) was developed for CSFV and PRRSV co-infections or infections, respectively. A set of two pairs of primer was designed based on the sequence of nonstructural protein NS54B of CSFV and ORF7 gene of PRRSV. The diagnostic accuracy of multiplex RT-PCR assay was evaluated by using 56 field clinical samples by multiplex RT-PCR, single RT-PCR and sequence analysis; and the specificity of multiplex PCR was verified by using constructed plasmids containing the specific viral target fragments of PRRSV and CSFV, respectively. The results indicated that this assay could reliably differentiate PRRSV and CSFV in co-infection samples. The multiplex RT-PCR developed in this study might provide a new avenue to the rapid the detection of CSFV and PRRSV in one reaction.
基金supported by the grants from the National"863" Programme (2006AA10A2041)Development Programme of Science and Technology,Chengguan District of Gansu province (08-5-4)
文摘Reverse transcription polymerase chain reaction (RT-PCR) was used for the detection of classical swine fever virus (CSFV) in blood and tissue samples of field cases and experimentally inoculated pigs. The distribution of CSFV in different organ samples showed some discrepancies in infected pigs. Four weaner pigs were inoculated with C-strain vaccine virus, then samples of spleen, tonsil, lung, mesenteric lymph node, kidney and brain were collected after slaughter and tested for E2 and NS5B genes using one-step RT-PCR and nested RT-PCR. Using the same method, 12 field cases were simultaneously studied. A discrepancy of CSFV in different samples was found upon detecting the target gene. The most reliable diagnostic organs were spleen and tonsil, and the nested RT-PCR assay provided a highly sensitive and specific method with comparable performance to the one-step RT-PCR assay.