Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of hig...Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.展开更多
NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperat...NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.展开更多
The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experiment...The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experimental researches, the sol-gel method was chosen, which enables control of nucleation, aging and growth of particles in the solution. ZnO synthesis was prepared utilizing chemical method with Zinc acetate dyhidrate and NaOH with the appropriate methanol solvent and heating (60˚C). The methods used in identification and characterization are FTIR, UV/VIS, OPTICAL MICROSCOPY, SEM and XRD. The FTIR spectra of synthesized ZnO with corresponding ones show characteristic bands at the corresponding wavelengths, which confirm the presence of ZnO nanoparticles. SEM characterization of ZnO shows the morphology of needle-shaped nanoparticles. XRD spectar in this research by chemical method indicates the particle size of 17.76 nm.展开更多
Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications ...Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.展开更多
Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have ...Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.展开更多
A novel method for synthesis of substituted u-oxo-bis[tetraphenyl porphyrinatoiron] compotmds ([TRPPFe]20) based on the reaction among free base porphyrins (TRPPH2), FeSO4·7H2O and H2O in one pot was proposed...A novel method for synthesis of substituted u-oxo-bis[tetraphenyl porphyrinatoiron] compotmds ([TRPPFe]20) based on the reaction among free base porphyrins (TRPPH2), FeSO4·7H2O and H2O in one pot was proposed and investigated. Four kinds of [TRPPFe]2O were synthesized by this novel synthetic method, and their structures were characterized by elemental analysis, infrared spectra and UV-vis spectroscopy. The reaction conditions, including the effect of different iron salts on the formation of [TRPPFe]2O, the reaction time between FeSO4-7H2O and TRPPH2, the molar ratio of FeSO4-7H2O/TRPPH2 as well as the volume ratio of H2O/DMF, were investigated. The [TRPPFe]2O yield of 93% 98% could be obtained under the following optimal conditions: the reaction time of FeSOn-7H2O with TRPPH2 was about 10 h, the molar ratio of FeSOn-7H2O/TRPPH2 about 5 : 1, and the volume ratio of H2O/DMF exceeded 2 : 1. Further research indicated that only TRPPFeCI were formed once FeSOn-7H2O was replaced by FeCl2-4H2O, the reason of which might be that halogen ions in iron salts interfered the formation of [TRPPFe]2O, suggesting that halogen ions should be avoided in this novel synthetic method.展开更多
A mild, one-pot procedure for the synthesis of vinyl ethers in good yields from 2-hydroxyalkyl phenyl selenides with primary or secondary organic halides has been developed.
Compounds 1 (C17H22N2,Mr =254.37) and 2 (C13H16N2,Mr=200.28) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Crystal 1 belongs to triclinic,space group P(1)...Compounds 1 (C17H22N2,Mr =254.37) and 2 (C13H16N2,Mr=200.28) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Crystal 1 belongs to triclinic,space group P(1) with a =6.524(2),b =8.987(3),c =12.746(5) A,α =95.220(7),β =90.055(6),γ =104.431(6)°,V =720.5(4) A^3,Z =2,Dc =1.173 g/cm^3,μ(MoKα) =0.069 mm1,F(000) =276,R =0.0578 and wR =0.1221 for 1487 observed reflections Ⅰ 〉 2o(Ⅰ).Crystal 2 is of tetragonal system,space group Ⅰ41/a with a =20.763(10),b =20.763(10),c =11.427(6) A,V=4926(4) A3,Z =16,Dc =1.080 g/cm^3,μ(MoKα) =0.065 mm-1,F(000) =1728,R =0.0581 and wR =0.1288 for 1408 observed reflections with Ⅰ 〉 2σ(Ⅰ).Although the two compounds are similar with the same pyrazole and benzene ring units,X-ray analysis reveals that their structures are completely different maybe caused by steric effects.展开更多
The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method fo...Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.展开更多
A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resu...A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resultant polymer, with the approximate formula [SiH1.2(CH3)0.71(CH2CHCH2)0.09CH2]n, has been characterized by 1H, 13C, and 29Si NMR, GPC, TG and elemental analysis. It could be cross-linked thermally at 170 °C in the absence of oxygen. Pyrolysis of the polymer gave a ceramic with a yield of about 70%.展开更多
An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-uns...An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.展开更多
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 p...Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.展开更多
A facile one-pot synthesis of 2-aminothiazoles has been carried in PEG-400 as a greener medium at room temperature.This method avoids the use of lachrymatric a-bromoketones as well as the volatile,toxic organic solvents.
Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepa...Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination.Several techniques,such as TEM,XRD and XPS,were adopted to characterize the structural and catalytic features of samples.Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles,while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals.This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7%under the optimal reaction conditions;in contrast,the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero.Furthermore,the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale,which is comparable to the previously reported heterogeneous noble-based catalysts.More surprisingly,the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times.In conclusion,these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance,proving cost-effective and sustainable access to the wide application of reductive amination.展开更多
Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. ...Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. The ionic liquids were used as catalyst for Friedel-Crafts alkylation of benzene and 1-dodecene. The turnovers of l-dodecene were higher than 99%. Monoalkylbenzene selectivity was 98%, while the 2-substituent product selectivity was 45%.展开更多
Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraet...Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraethoxysilane (TEOS) as silica source, and chloropropyltriethoxysilane (C1PTES) as the coupling agent. The microstructure of MCM-41-(CH2)3Cl was characterized by the means of X-ray diffraction (XRD), nitrogen absorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a successful synthesis of MCM-41-(CH2)3Cl with well structure is obtained. The optimal microwave power is 120 W and the best microwave time is 50 rain. The dosage of chloropropyltriethoxysilane on the structure of chloropropyl-functionalzed MCM-41 was also investigated. It is found that the chloropropyltriethoxysilane volume between 0.8 mL and 1.6 mL is favorable for the formation of highly ordered MCM-41-(CH2)3Cl mesostructure.展开更多
With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristi...With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.展开更多
High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal r...High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal reaction rate, product phase component, and morphology of whiskers were investigated. The results show that the reactivity of hydrated titania, anatase TiO2, and rutile TiO2 with KOH decreases in turn, and with hydrated titania as titanium source, it is difficult to obtain potassium hexatitanate whiskers with good morphology. In contrast, uniform potassium hexatitanate whiskers with a length of 10-20 μm and a diameter of 200-700 nm were obtained using anatase TiO2 as titanium source. The investigation demonstrates that the initial KOH concentration, annealing temperature and time, molar ratio of K2O/TiO2, etc. significantly affect the morphology of the as-synthesized whiskers. The optimized synthesis condition is as follows: anatase as a titanium source 10 wt.% KOH solution; annealing temperature and time of 300℃ and 5 h, respectively; K2O/TiO2 molar ratio of 5, etc. A rhombic potassium hexatitanate was prepared under the optimum condition and the whisker grew along the [110] direction. The reaction mechanism was discussed.展开更多
基金supported by Basic Frontier Scientific Research of the Chinese Academy of Sciences(ZDBS-LY-JSC041)the National Natural Science Foundation of China(22178348)+1 种基金the open research fund of the State Key Laboratory of Mesoscience and Engineering(MESO-23-D06)the Youth Innovation Promotion Association CAS(292021000085)。
文摘Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.
基金supported by Project of Central Government for Local Science and Technology Development of China (2022JH6/100100050)the National Natural Science Foundation of China (21776028)Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (ZJKF2001)。
文摘NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.
文摘The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experimental researches, the sol-gel method was chosen, which enables control of nucleation, aging and growth of particles in the solution. ZnO synthesis was prepared utilizing chemical method with Zinc acetate dyhidrate and NaOH with the appropriate methanol solvent and heating (60˚C). The methods used in identification and characterization are FTIR, UV/VIS, OPTICAL MICROSCOPY, SEM and XRD. The FTIR spectra of synthesized ZnO with corresponding ones show characteristic bands at the corresponding wavelengths, which confirm the presence of ZnO nanoparticles. SEM characterization of ZnO shows the morphology of needle-shaped nanoparticles. XRD spectar in this research by chemical method indicates the particle size of 17.76 nm.
基金This research was funded by the Deanship of Scientific Research at the German-Jordanian University and the Deanship of Scientific Research at Zarqa University.The graphical abstract was created with BioRender software.
文摘Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.
基金supported by the National Natural Science Foundation of China (Nos. 21822407 and 22074154)Youth Innovation Promotion Association CAS (2021420)the Foundation for Sci & Tech Research Project of Gansu Province (20JR10RA045 and 20JR5RA573)。
文摘Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.
基金Supported by the National Natural Science Foundation of China (20776003, 20576005) and the Key Project of Natural Science Foundation of Beijing (2061001).
文摘A novel method for synthesis of substituted u-oxo-bis[tetraphenyl porphyrinatoiron] compotmds ([TRPPFe]20) based on the reaction among free base porphyrins (TRPPH2), FeSO4·7H2O and H2O in one pot was proposed and investigated. Four kinds of [TRPPFe]2O were synthesized by this novel synthetic method, and their structures were characterized by elemental analysis, infrared spectra and UV-vis spectroscopy. The reaction conditions, including the effect of different iron salts on the formation of [TRPPFe]2O, the reaction time between FeSO4-7H2O and TRPPH2, the molar ratio of FeSO4-7H2O/TRPPH2 as well as the volume ratio of H2O/DMF, were investigated. The [TRPPFe]2O yield of 93% 98% could be obtained under the following optimal conditions: the reaction time of FeSOn-7H2O with TRPPH2 was about 10 h, the molar ratio of FeSOn-7H2O/TRPPH2 about 5 : 1, and the volume ratio of H2O/DMF exceeded 2 : 1. Further research indicated that only TRPPFeCI were formed once FeSOn-7H2O was replaced by FeCl2-4H2O, the reason of which might be that halogen ions in iron salts interfered the formation of [TRPPFe]2O, suggesting that halogen ions should be avoided in this novel synthetic method.
基金the Natural Science Foundation of Jiangxi Province(No.0420017)for financial support
文摘A mild, one-pot procedure for the synthesis of vinyl ethers in good yields from 2-hydroxyalkyl phenyl selenides with primary or secondary organic halides has been developed.
基金Supported by Hubei University of Technology,Science and Technology Department of Hubei Province(No.2012FFB00706)National Natural Science Foundation of China(No.21272086)
文摘Compounds 1 (C17H22N2,Mr =254.37) and 2 (C13H16N2,Mr=200.28) have been synthesized and their crystal structures were determined by single-crystal X-ray diffraction.Crystal 1 belongs to triclinic,space group P(1) with a =6.524(2),b =8.987(3),c =12.746(5) A,α =95.220(7),β =90.055(6),γ =104.431(6)°,V =720.5(4) A^3,Z =2,Dc =1.173 g/cm^3,μ(MoKα) =0.069 mm1,F(000) =276,R =0.0578 and wR =0.1221 for 1487 observed reflections Ⅰ 〉 2o(Ⅰ).Crystal 2 is of tetragonal system,space group Ⅰ41/a with a =20.763(10),b =20.763(10),c =11.427(6) A,V=4926(4) A3,Z =16,Dc =1.080 g/cm^3,μ(MoKα) =0.065 mm-1,F(000) =1728,R =0.0581 and wR =0.1288 for 1408 observed reflections with Ⅰ 〉 2σ(Ⅰ).Although the two compounds are similar with the same pyrazole and benzene ring units,X-ray analysis reveals that their structures are completely different maybe caused by steric effects.
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金supported by National Natural Science Foundation of China(Grant No.51135008)National Basic Research Program of China(973 Program,Grant No.2013CB035400)China Postdoctoral Science Foundation(Grant Nos.2012M520256,2013T60107)
文摘Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.
文摘A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resultant polymer, with the approximate formula [SiH1.2(CH3)0.71(CH2CHCH2)0.09CH2]n, has been characterized by 1H, 13C, and 29Si NMR, GPC, TG and elemental analysis. It could be cross-linked thermally at 170 °C in the absence of oxygen. Pyrolysis of the polymer gave a ceramic with a yield of about 70%.
基金Natural Science Foundation of China (Grant No.20672009)the Major State Basic Research Development Program(Grant No.2004CB719900).
文摘An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.
基金Project supported by the International Cooperation of Science and Technology Ministry PRC (2005DFBA028)the National Natural Science Foundation of China (59925412)
文摘Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.
文摘A facile one-pot synthesis of 2-aminothiazoles has been carried in PEG-400 as a greener medium at room temperature.This method avoids the use of lachrymatric a-bromoketones as well as the volatile,toxic organic solvents.
基金This work was supported financially by the National Key R&D Program of China(2018YFB1501500)National Natural Science Foundation of China(51976225).
文摘Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination.Several techniques,such as TEM,XRD and XPS,were adopted to characterize the structural and catalytic features of samples.Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles,while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals.This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7%under the optimal reaction conditions;in contrast,the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero.Furthermore,the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale,which is comparable to the previously reported heterogeneous noble-based catalysts.More surprisingly,the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times.In conclusion,these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance,proving cost-effective and sustainable access to the wide application of reductive amination.
基金the grant from the National Natural Science Foundation of China (Key Program 20533010).
文摘Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. The ionic liquids were used as catalyst for Friedel-Crafts alkylation of benzene and 1-dodecene. The turnovers of l-dodecene were higher than 99%. Monoalkylbenzene selectivity was 98%, while the 2-substituent product selectivity was 45%.
基金Project(207759096) supported by the National Natural Science Foundation of ChinaProject(20080440696) supported by the China Postdoctoral Science Foundation
文摘Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraethoxysilane (TEOS) as silica source, and chloropropyltriethoxysilane (C1PTES) as the coupling agent. The microstructure of MCM-41-(CH2)3Cl was characterized by the means of X-ray diffraction (XRD), nitrogen absorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a successful synthesis of MCM-41-(CH2)3Cl with well structure is obtained. The optimal microwave power is 120 W and the best microwave time is 50 rain. The dosage of chloropropyltriethoxysilane on the structure of chloropropyl-functionalzed MCM-41 was also investigated. It is found that the chloropropyltriethoxysilane volume between 0.8 mL and 1.6 mL is favorable for the formation of highly ordered MCM-41-(CH2)3Cl mesostructure.
文摘With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.
文摘High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal reaction rate, product phase component, and morphology of whiskers were investigated. The results show that the reactivity of hydrated titania, anatase TiO2, and rutile TiO2 with KOH decreases in turn, and with hydrated titania as titanium source, it is difficult to obtain potassium hexatitanate whiskers with good morphology. In contrast, uniform potassium hexatitanate whiskers with a length of 10-20 μm and a diameter of 200-700 nm were obtained using anatase TiO2 as titanium source. The investigation demonstrates that the initial KOH concentration, annealing temperature and time, molar ratio of K2O/TiO2, etc. significantly affect the morphology of the as-synthesized whiskers. The optimized synthesis condition is as follows: anatase as a titanium source 10 wt.% KOH solution; annealing temperature and time of 300℃ and 5 h, respectively; K2O/TiO2 molar ratio of 5, etc. A rhombic potassium hexatitanate was prepared under the optimum condition and the whisker grew along the [110] direction. The reaction mechanism was discussed.