期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ghost Module Based Residual Mixture of Self-Attention and Convolution for Online Signature Verification
1
作者 Fangjun Luan Xuewen Mu Shuai Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第4期695-712,共18页
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h... Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification. 展开更多
关键词 online signature verification feature selection ACG block ghost-ACmix residual structure
下载PDF
Neutrosophic Rule-Based Identity Verification System Based on Handwritten Dynamic Signature Analysis
2
作者 Amr Hefny Aboul Ella Hassanien Sameh H.Basha 《Computers, Materials & Continua》 SCIE EI 2021年第11期2367-2385,共19页
Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of t... Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of these approaches extract only global characteristics.With the aim of capturing both dynamic global and local features,this paper introduces a novel model for verifying handwritten dynamic signatures using neutrosophic rule-based verification system(NRVS)and Genetic NRVS(GNRVS)models.The neutrosophic Logic is structured to reflect multiple types of knowledge and relations among all features using three values:truth,indeterminacy,and falsity.These three values are determined by neutrosophic membership functions.The proposed model also is able to deal with all features without the need to select from them.In the GNRVS model,the neutrosophic rules are automatically chosen by Genetic Algorithms.The performance of the proposed system is tested on the MCYT-Signature-100 dataset.In terms of the accuracy,average error rate,false acceptance rate,and false rejection rate,the experimental results indicate that the proposed model has a significant advantage compared to different well-known models. 展开更多
关键词 BIOMETRICS online signature verification neutrosophic rule-based verification system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部