The current research of state of charge(SoC) online estimation of lithium-ion battery(LiB) in electric vehicles(EVs)mainly focuses on adopting or improving of battery models and estimation filters. However, little att...The current research of state of charge(SoC) online estimation of lithium-ion battery(LiB) in electric vehicles(EVs)mainly focuses on adopting or improving of battery models and estimation filters. However, little attention has been paid to the accuracy of various open circuit voltage(OCV) models for correcting the SoC with aid of the ampere-hour counting method. This paper presents a comprehensive comparison study on eighteen OCV models which cover the majority of models used in literature. The low-current OCV tests are conducted on the typical commercial LiFePO/graphite(LFP) and LiNiMnCoO/graphite(NMC) cells to obtain the experimental OCV-SoC curves at different ambient temperature and aging stages. With selected OCV and SoC points from experimental OCV-SoC curves, the parameters of each OCV model are determined by curve fitting toolbox of MATLAB 2013. Then the fitting OCV-SoC curves based on diversified OCV models are also obtained. The indicator of root-mean-square error(RMSE) between the experimental data and fitted data is selected to evaluate the adaptabilities of these OCV models for their main features, advantages,and limitations. The sensitivities of OCV models to ambient temperatures, aging stages, numbers of data points,and SoC regions are studied for both NMC and LFP cells. Furthermore, the influences of these models on SoC estimation are discussed. Through a comprehensive comparison and analysis on OCV models, some recommendations in selecting OCV models for both NMC and LFP cells are given.展开更多
针对单体电池串联成组使用时出现不一致性的问题,提出了一种基于双向DC-DC变换器的串联电池组主动均衡电路。使用双向DC-DC变换器将单体电池中的高能量输送到能量低的单体电池中,无需额外的存储组件来存储和传送能量,减少了能量损失,提...针对单体电池串联成组使用时出现不一致性的问题,提出了一种基于双向DC-DC变换器的串联电池组主动均衡电路。使用双向DC-DC变换器将单体电池中的高能量输送到能量低的单体电池中,无需额外的存储组件来存储和传送能量,减少了能量损失,提高了均衡效率。根据电池开路电压(open circuit voltage,OCV)与荷电状态(state of charge,SOC)之间近似分段线性的关系,采用以电压和SOC双变量作为均衡策略,通过相互实时修正电压均衡和SOC均衡,使得电池组间能量动态趋于一致。最后通过搭建由4节单体电池组成的均衡电路实验平台,对提出的均衡电路和均衡控制策略进行有效性验证。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51507012)Beijing Municipal Natural Science Foundation of China(Grant No.3182035)
文摘The current research of state of charge(SoC) online estimation of lithium-ion battery(LiB) in electric vehicles(EVs)mainly focuses on adopting or improving of battery models and estimation filters. However, little attention has been paid to the accuracy of various open circuit voltage(OCV) models for correcting the SoC with aid of the ampere-hour counting method. This paper presents a comprehensive comparison study on eighteen OCV models which cover the majority of models used in literature. The low-current OCV tests are conducted on the typical commercial LiFePO/graphite(LFP) and LiNiMnCoO/graphite(NMC) cells to obtain the experimental OCV-SoC curves at different ambient temperature and aging stages. With selected OCV and SoC points from experimental OCV-SoC curves, the parameters of each OCV model are determined by curve fitting toolbox of MATLAB 2013. Then the fitting OCV-SoC curves based on diversified OCV models are also obtained. The indicator of root-mean-square error(RMSE) between the experimental data and fitted data is selected to evaluate the adaptabilities of these OCV models for their main features, advantages,and limitations. The sensitivities of OCV models to ambient temperatures, aging stages, numbers of data points,and SoC regions are studied for both NMC and LFP cells. Furthermore, the influences of these models on SoC estimation are discussed. Through a comprehensive comparison and analysis on OCV models, some recommendations in selecting OCV models for both NMC and LFP cells are given.
文摘针对单体电池串联成组使用时出现不一致性的问题,提出了一种基于双向DC-DC变换器的串联电池组主动均衡电路。使用双向DC-DC变换器将单体电池中的高能量输送到能量低的单体电池中,无需额外的存储组件来存储和传送能量,减少了能量损失,提高了均衡效率。根据电池开路电压(open circuit voltage,OCV)与荷电状态(state of charge,SOC)之间近似分段线性的关系,采用以电压和SOC双变量作为均衡策略,通过相互实时修正电压均衡和SOC均衡,使得电池组间能量动态趋于一致。最后通过搭建由4节单体电池组成的均衡电路实验平台,对提出的均衡电路和均衡控制策略进行有效性验证。