This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,...This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.展开更多
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the ...A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in dis...By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.展开更多
Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient...Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.展开更多
To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insul...To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.展开更多
The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△...The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.展开更多
To examine the influence of the harsh environment in plateau areas on the operating speed of vehicles,advanced speed prediction models for curved segments are established based on observed actual speed data.First,the ...To examine the influence of the harsh environment in plateau areas on the operating speed of vehicles,advanced speed prediction models for curved segments are established based on observed actual speed data.First,the speed characteristics at the starting,mid,and end points of a plane curve were observed on Lalin Highway and China National Highway 318 with Bushnell s handheld radar speedometer 10-1911CN.Second,the stepwise regression method was proposed to determine the significant parameters and propose the prediction models of the operating speed of cars and large vehicles for the two highways.Finally,reserved test group data were utilized to prove the validity and practicality of the proposed models.Compared with traditional methods,the established models can produce more accurate prediction results and deeply examine the nonlinear relationships between parameters and the predicted operating speed.This study provides a considerate direction and basis for the operating speed prediction model for other segments in plateau regions.展开更多
Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual...Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual effects of operating conditions (e.g. pressure, temperature and gas flow rates) as well as the effect of moisture on the adsorption capacity of polyaspartamide were methodically investigated using Dubinin-Raduskevich model. Results from the investigations reveal that the presence of moisture in the flue gas had an incremental effect on the adsorption capacity of polyaspartamide;thereby showcasing the potential of polyaspartamide as a suitable hydrophilic material for CO2 capture in power plants. In addition, pressure, temperature and gas flow rates at 200 kPa, 403 K, and 1.5 mL/s, respectively, sig? nificantly influenced the CO2 adsorption capacity of polyaspartamide. Physisorption and chemisorption both governed the adsorption process while equilibrium studies at different temperatures showed that Langmuir isotherm could adequately describe the adsorption behaviour of the material with best fit with R^2>0.95.展开更多
The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electroc...The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electrochemical reaction and ensuring charge neutrality.Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation.This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions.The AC power supply was set within the frequency range of 0.5-64 Hz,with eight specific frequency conditions selected for experimentation.The experimental results indicate that the thruster operates steadily within a voltage range of±1470 to±1920 V,with corresponding positive polarity current ranging from 0.41 to 4.91μA and negative polarity current ranging from−0.49 to−4.10μA.During voltage polarity switching,an emission delay occurs,manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets.Extended emission test was conducted at 16 Hz,demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge.These findings underscore the favorable impact of AC conditions within the 8-16 Hz range on the self-neutralization capability of the ionic liquid thruster.展开更多
As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market enviro...As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market environment and corresponding mechanisms,current energy storage in China faces problems such as unclear operational models,insufficient cost recovery mechanisms,and a single investment entity,making it difficult to support the rapid development of the energy storage industry.In contrast,European and American countries have already embarked on certain practices in energy storage operation models.Through exploration of key issues such as investment entities,market participation forms,and cost recovery channels in both front and back markets,a wealth of mature experiences has been accumulated.Therefore,this paper first summarizes the existing practices of energy storage operation models in North America,Europe,and Australia’s electricity markets separately from front and back markets,finding that perfect market mechanisms and reasonable subsidy policies are among the main drivers for promoting the rapid development of energy storage markets.Subsequently,combined with the actual development of China’s electricity market,it explores three key issues affecting the construction of costsharing mechanisms for energy storage under market conditions:Market participation forms,investment and operation modes,and cost recovery mechanisms.Finally,in line with the development expectations of China’s future electricitymarket,suggestions are proposed fromfour aspects:Market environment construction,electricity price formation mechanism,cost sharing path,and policy subsidy mechanism,to promote the healthy and rapid development of China’s energy storage industry.展开更多
The'Internet+QQ farm'creative agriculture presented in this paper is the innovation based on the currently booming reality QQ farm,aimed at reducing cost,improving efficiency and optimizing human and material ...The'Internet+QQ farm'creative agriculture presented in this paper is the innovation based on the currently booming reality QQ farm,aimed at reducing cost,improving efficiency and optimizing human and material resource elements.It can make Internet provide technical support for intelligence-based life,leisure,entertainment,with good prospects for development.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temper...The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temperature and solar irradiance)based on real measurements conducted in the tropical region.For each weather condition(categorized according to irradiance and temperature levels),the temperatures of the PV modules obtained using the proposed approach is compared with the corresponding experimentally measured value.The results show that the proposed models have a smaller Root Mean Squared Error than other models developed in the literature for all weather conditions,which confirms the reliability of the proposed framework.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN202101133 and KJQN202301105)Scientific Research Foundation of Chongqing University of Technology(Grant No.2020ZDZ023).
文摘This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
文摘A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 50677056 and 60472059)
文摘By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.
基金Project (No. 2004CB217901) supported by the National Basic Re-search Program (973) of China
文摘Operational reliability evaluation theory reflects real-time reliability level of power system. The component failure rate varies with operating conditions. The impact of real-time operating conditions such as ambient temperature and transformer MVA (megavolt-ampere) loading on transformer insulation life is studied in this paper. The formula of transformer failure rate based on the winding hottest-spot temperature (HST) is given. Thus the real-time reliability model of transformer based on oper- ating conditions is presented. The work is illustrated using the 1979 IEEE Reliability Test System. The changes of operating conditions are simulated by using hourly load curve and temperature curve, so the curves of real-time reliability indices are ob- tained by using operational reliability evaluation.
基金supported in part by the Huxiang Youth Talent Support Program(No.2020RC3030)in part by the Foundation of State Key Laboratory of Pulsed Power Laser Technology(Nos.SKL2021ZR02 and SKL2021KF05)。
文摘To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes.
文摘The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.
基金The National Natural Science Foundation of China(No.51768063,51868068)。
文摘To examine the influence of the harsh environment in plateau areas on the operating speed of vehicles,advanced speed prediction models for curved segments are established based on observed actual speed data.First,the speed characteristics at the starting,mid,and end points of a plane curve were observed on Lalin Highway and China National Highway 318 with Bushnell s handheld radar speedometer 10-1911CN.Second,the stepwise regression method was proposed to determine the significant parameters and propose the prediction models of the operating speed of cars and large vehicles for the two highways.Finally,reserved test group data were utilized to prove the validity and practicality of the proposed models.Compared with traditional methods,the established models can produce more accurate prediction results and deeply examine the nonlinear relationships between parameters and the predicted operating speed.This study provides a considerate direction and basis for the operating speed prediction model for other segments in plateau regions.
文摘Parametric effect of moisture and influence of operating variables on the adsorption behaviour of polyaspartamide during CO2 capture was investigated in this study using experimental and modelling approach. Individual effects of operating conditions (e.g. pressure, temperature and gas flow rates) as well as the effect of moisture on the adsorption capacity of polyaspartamide were methodically investigated using Dubinin-Raduskevich model. Results from the investigations reveal that the presence of moisture in the flue gas had an incremental effect on the adsorption capacity of polyaspartamide;thereby showcasing the potential of polyaspartamide as a suitable hydrophilic material for CO2 capture in power plants. In addition, pressure, temperature and gas flow rates at 200 kPa, 403 K, and 1.5 mL/s, respectively, sig? nificantly influenced the CO2 adsorption capacity of polyaspartamide. Physisorption and chemisorption both governed the adsorption process while equilibrium studies at different temperatures showed that Langmuir isotherm could adequately describe the adsorption behaviour of the material with best fit with R^2>0.95.
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program(No.20210623091808026).
文摘The bipolar ionic liquid thruster employs ionic liquid as a propellant to discharge positively and negatively charged high-energy particles under an alternating current(AC)power source,effectively suppressing electrochemical reaction and ensuring charge neutrality.Determining an optimal AC supply power source frequency is critical for sustained stable thruster operation.This study focuses on the emission characteristics of the ionic liquid thruster under varied AC conditions.The AC power supply was set within the frequency range of 0.5-64 Hz,with eight specific frequency conditions selected for experimentation.The experimental results indicate that the thruster operates steadily within a voltage range of±1470 to±1920 V,with corresponding positive polarity current ranging from 0.41 to 4.91μA and negative polarity current ranging from−0.49 to−4.10μA.During voltage polarity switching,an emission delay occurs,manifested as a prominent peak signal caused by circuit capacitance characteristics and a minor peak signal resulting from liquid droplets.Extended emission test was conducted at 16 Hz,demonstrating approximately 1 h and 50 min of consistent emission before intermittent discharge.These findings underscore the favorable impact of AC conditions within the 8-16 Hz range on the self-neutralization capability of the ionic liquid thruster.
基金supported financially by State Grid Henan Electric Power Company Technology Project“Research on System Cost Impact Assessment and Sharing Mechanism under the Rapid Development of Distributed Photovoltaics”(Grant Number:5217L0220021).
文摘As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market environment and corresponding mechanisms,current energy storage in China faces problems such as unclear operational models,insufficient cost recovery mechanisms,and a single investment entity,making it difficult to support the rapid development of the energy storage industry.In contrast,European and American countries have already embarked on certain practices in energy storage operation models.Through exploration of key issues such as investment entities,market participation forms,and cost recovery channels in both front and back markets,a wealth of mature experiences has been accumulated.Therefore,this paper first summarizes the existing practices of energy storage operation models in North America,Europe,and Australia’s electricity markets separately from front and back markets,finding that perfect market mechanisms and reasonable subsidy policies are among the main drivers for promoting the rapid development of energy storage markets.Subsequently,combined with the actual development of China’s electricity market,it explores three key issues affecting the construction of costsharing mechanisms for energy storage under market conditions:Market participation forms,investment and operation modes,and cost recovery mechanisms.Finally,in line with the development expectations of China’s future electricitymarket,suggestions are proposed fromfour aspects:Market environment construction,electricity price formation mechanism,cost sharing path,and policy subsidy mechanism,to promote the healthy and rapid development of China’s energy storage industry.
文摘The'Internet+QQ farm'creative agriculture presented in this paper is the innovation based on the currently booming reality QQ farm,aimed at reducing cost,improving efficiency and optimizing human and material resource elements.It can make Internet provide technical support for intelligence-based life,leisure,entertainment,with good prospects for development.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
文摘The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temperature and solar irradiance)based on real measurements conducted in the tropical region.For each weather condition(categorized according to irradiance and temperature levels),the temperatures of the PV modules obtained using the proposed approach is compared with the corresponding experimentally measured value.The results show that the proposed models have a smaller Root Mean Squared Error than other models developed in the literature for all weather conditions,which confirms the reliability of the proposed framework.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.