A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispe...A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispersion of liquid phase, liquid- film mass transfer, intraparticle diffusion and panticle shape, and can revealclearly the behavior of solid and liquid phase in adsorption process. The simulation results agree with the experimental data rather well.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three t...We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.展开更多
文摘A stochastic model is developed to predict the peniodic operation performance ofthe continuous counter-current adsorption process. The model takes into account theeffects of random backmixing of particles, axial dispersion of liquid phase, liquid- film mass transfer, intraparticle diffusion and panticle shape, and can revealclearly the behavior of solid and liquid phase in adsorption process. The simulation results agree with the experimental data rather well.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
文摘We presented Mathematical apparatus of the choice of optimum parameters of technical, technological systems and materials on the basis of vector optimization. We have considered the formulation and solution of three types of tasks presented below. First, the problem of selecting the optimal parameters of technical systems depending on the functional characteristics of the system. Secondly, the problem of selecting the optimal parameters of the process depending on the technological characteristics of the process. Third, the problem of choosing the optimal structure of the material depending on the functional characteristics of this material. The statement of all problems is made in the form of vector problems of mathematical (nonlinear) programming. The theory and the principle of optimality of the solution of vector tasks it is explained in work of https://rdcu.be/bhZ8i. The implementation of the methodology is shown on a numerical example of the choice of optimum parameters of the technical, technological systems and materials. On the basis of mathematical methods of solution of vector problems we developed the software in the MATLAB system. The numerical example includes: input data (requirement specification) for modeling;transformation of mathematical models with uncertainty to the model under certainty;acceptance of an optimal solution with equivalent criteria (the solution of numerical model);acceptance of an optimal solution with the given priority of criterion.