This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order t...In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.展开更多
Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruschewey...Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruscheweyh-type harmonic differential operator in D.We first obtain a sufficient coefficient condition that guarantees that a function f in H is sense-preserving harmonic univalent in D and belongs to the aforementioned class.Using this coefficient condition,we then examine ratios of partial sums of f in H.In all cases the results are sharp.In addition,the results so obtained generalize the related works of some authors,and many other new results are obtained.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμ...Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.展开更多
Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varyi...Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.展开更多
This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic...This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
In this paper,we introduce and investigate certain subclass of analytic and univalent functions involving q-differintegral operator.For this function class,we give the bound estimates of the coefficients a2 and a3 and...In this paper,we introduce and investigate certain subclass of analytic and univalent functions involving q-differintegral operator.For this function class,we give the bound estimates of the coefficients a2 and a3 and some Fekete-Szegöfunctional inequalities.Besides,we also estimate the corresponding symmetric Toeplitz determinants.Furthermore,we point out some consequences and connections to these results above.展开更多
Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted...Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
基金supported by the Natural Science Foundation of Hunan Province of China(2022JJ30369)the Education Department Important Foundation of Hunan Province in China(23A0095)。
文摘In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
文摘Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruscheweyh-type harmonic differential operator in D.We first obtain a sufficient coefficient condition that guarantees that a function f in H is sense-preserving harmonic univalent in D and belongs to the aforementioned class.Using this coefficient condition,we then examine ratios of partial sums of f in H.In all cases the results are sharp.In addition,the results so obtained generalize the related works of some authors,and many other new results are obtained.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY23A010003).
文摘Letμbe a positive Borel measure on the interval[0,1).The Hankel matrix■with entriesμn,k=μn+k,whereμn=■[0,1)tndμ(t),induces,formally,the operator■where■is an analytic function in.We characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the Bergman space■,where 0≤α<∞,0<p<∞.We also characterize the measuresμfor which■is bounded(resp.,compact)operator from the logarithmic Bloch space■into the classical Bloch space■.
基金supported by the National Key Research and Development Program of China(2022YFA1503501)the National Natural Science Foundation of China(22378112,22278127,and 22078088)+1 种基金the Fundamental Research Funds for the Central Universities(2022ZFJH004)the Shanghai Rising-Star Program(21QA1401900).
文摘Reactive transport equations in porous media are critical in various scientific and engineering disciplines,but solving these equations can be computationally expensive when exploring different scenarios,such as varying porous structures and initial or boundary conditions.The deep operator network(DeepONet)has emerged as a popular deep learning framework for solving parametric partial differential equations.However,applying the DeepONet to porous media presents significant challenges due to its limited capability to extract representative features from intricate structures.To address this issue,we propose the Porous-DeepONet,a simple yet highly effective extension of the DeepONet framework that leverages convolutional neural networks(CNNs)to learn the solution operators of parametric reactive transport equations in porous media.By incorporating CNNs,we can effectively capture the intricate features of porous media,enabling accurate and efficient learning of the solution operators.We demonstrate the effectiveness of the Porous-DeepONet in accurately and rapidly learning the solution operators of parametric reactive transport equations with various boundary conditions,multiple phases,and multiphysical fields through five examples.This approach offers significant computational savings,potentially reducing the computation time by 50–1000 times compared with the finite-element method.Our work may provide a robust alternative for solving parametric reactive transport equations in porous media,paving the way for exploring complex phenomena in porous media.
基金supported by the University Natural Science Foundation of Jiangsu Province(Grant No.23KJB130004)the National Natural Science Foundation of China(Grant Nos.11932006,U1934206,12172121,12002118).
文摘This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金Supported by Natural Science Foundation of Ningxia(Grant No.2023AAC03001)Natural Science Foundation of China(Grant No.12261068).
文摘In this paper,we introduce and investigate certain subclass of analytic and univalent functions involving q-differintegral operator.For this function class,we give the bound estimates of the coefficients a2 and a3 and some Fekete-Szegöfunctional inequalities.Besides,we also estimate the corresponding symmetric Toeplitz determinants.Furthermore,we point out some consequences and connections to these results above.
基金supported by the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the National Natural Science Foundation of China(12071431)+1 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Let n≥2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ^(n).In this article,we consider the weighted Kato square root problem for L.More precisely,we prove that the square root L^(1/2)satisfies the weighted L^(p)estimates||L^(1/2)(f)||L_(ω)^p(R^(n))≤C||■f||L_(ω)^p(R^(n);R^(n))for any p∈(1,∞)andω∈Ap(ℝ^(n))(the class of Muckenhoupt weights),and that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,2+ε)andω∈Ap(ℝ^(n))∩RH_(2+ε/p),(R^(n))(the class of reverse Hölder weights),whereε∈(0,∞)is a constant depending only on n and the operator L,and where(2+ε/p)'denotes the Hölder conjugate exponent of 2+ε/p.Moreover,for any given q∈(2,∞),we give a sufficient condition to obtain that||■f||L_(ω)^p(R^(n);R^(n))≤C||L^(1/2)(f)||L_(ω)^p(R^(n))for any p∈(1,q)andω∈A_(p)(R^(n))∩pRH_(q/p),(R^(n)).As an application,we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition,the Riesz transform∇L^(−1/2)is bounded on L_(ω)^(p)(ℝ^(n))for any given p∈(1,∞)andω∈Ap(ℝ^(n)).Furthermore,applications to the weighted L^(2)-regularity problem with the Dirichlet or the Neumann boundary condition are also given.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.