In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residu...In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.展开更多
In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix pr...In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.展开更多
We consider two-electron systems for the impurity Hubbard Model and investigate the spectrum of the system in a singlet state for the v-dimensional integer valued lattice Z<sup>v</sup>. We proved the essen...We consider two-electron systems for the impurity Hubbard Model and investigate the spectrum of the system in a singlet state for the v-dimensional integer valued lattice Z<sup>v</sup>. We proved the essential spectrum of the system in the singlet state is consists of union of no more then three intervals, and the discrete spectrum of the system in the singlet state is consists of no more then five eigenvalues. We show that the discrete spectrum of the system in the triplet and singlet states differ from each other. In the singlet state the appear additional two eigenvalues. In the triplet state the discrete spectrum of the system can be empty set, or is consists of one-eigenvalue, or is consists of two eigenvalues, or is consists of three eigenvalues. For investigation the structure of essential spectra and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model.展开更多
In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, ...In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, we apply the obtained results to determine the S-essential spectra of an integro-differential operator with abstract boundary conditions in L1([-a,a]×[-1,1])(a〉0).展开更多
We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensi...We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
In the present paper, we define the S-left and the S-right essential spectra of a linear operator and we study the stability of the S-essential spectra on a Banach space.
A class of meta-invariant operators over Cayley-Dickson algebra is studied. Their spectral theory is investigated. More- over, theorems about spectra of generalized unitary operators and their semigroups are demonstra...A class of meta-invariant operators over Cayley-Dickson algebra is studied. Their spectral theory is investigated. More- over, theorems about spectra of generalized unitary operators and their semigroups are demonstrated.展开更多
In [Perturbation of Spectrums of 2 × 2 Operator Matrices, Proceedings of the American Mathematical Society, Vol. 121, 1994], the authors asked whether there was an operator ?such that ?for a given pair?(A,B)?of o...In [Perturbation of Spectrums of 2 × 2 Operator Matrices, Proceedings of the American Mathematical Society, Vol. 121, 1994], the authors asked whether there was an operator ?such that ?for a given pair?(A,B)?of operators, where the operator ?was defined by . In this note, a partial answer for the question is given.展开更多
In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on...In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solutions of the equation and its adjoint are in (the limit circle case) that all well-posed extensions of the minimal operator have resolvents which are HilbertSchmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. These results extend those of formally symmetric expression studied in [1-10] and those of general quasi-differential expressions in [11-19].展开更多
In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1....In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.展开更多
In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we es...In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.展开更多
In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case ...In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.展开更多
This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show ...This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show that operators on the proposed ω-OCPn are densely defined and closed. Several existing results in the literature are contained in this work.展开更多
In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of...In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.展开更多
The pseudo Hermiticity with respect to the exchange operators of N-D complexHamiltonians is investigated. It is shown that if an N-D Hamiltonian is pseudo Hermitian and anyeigenfunction of it retains π_αT symmetry t...The pseudo Hermiticity with respect to the exchange operators of N-D complexHamiltonians is investigated. It is shown that if an N-D Hamiltonian is pseudo Hermitian and anyeigenfunction of it retains π_αT symmetry then the corresponding eigen value is real, where π_αis an exchange operator with respect to the permutation a of coordinates and T is the time reversaloperator. We construct a special class of N-D pseudo Hermitian Hamiltonians with respect to exchangeoperators from both N/2-D and N-D general complex Hamiltonians. Examples are presented forHamiltonians with πT symmetry (π : x reversible y, p_x reversible p_y) and the reality of thesesystems are investigated.展开更多
In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dime...In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dimensionalHamiltonian operator associated with plane elasticity equations without the body force is invertible,and the spectrumof which is non-empty and is a subset of R.展开更多
New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model arei...New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
In this paper, by initiative research on local spectral theory of total class wF(p, r, q) operators, we get some important results. Such as total class wF(p, r,q) operators is normaloid operator, the local spectra...In this paper, by initiative research on local spectral theory of total class wF(p, r, q) operators, we get some important results. Such as total class wF(p, r,q) operators is normaloid operator, the local spectral subspace of total class wF(p, r, q) operators is equal to the space EλH(Eλ the Reisz idempotent, with respect to λ1, of T), total class wF(p, r, q) operators has finite ascent, and so on.展开更多
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
基金supported by the National Natural Science Foundation of China under Grant No.10562002the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002+1 种基金the Natural Science Foundation of Inner Mongolia under Grant No.200508010103the Inner Mongolia University Scientific Research Starting Foundation for Talented Scholars under Grant No.207066
文摘In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.
文摘In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.
文摘We consider two-electron systems for the impurity Hubbard Model and investigate the spectrum of the system in a singlet state for the v-dimensional integer valued lattice Z<sup>v</sup>. We proved the essential spectrum of the system in the singlet state is consists of union of no more then three intervals, and the discrete spectrum of the system in the singlet state is consists of no more then five eigenvalues. We show that the discrete spectrum of the system in the triplet and singlet states differ from each other. In the singlet state the appear additional two eigenvalues. In the triplet state the discrete spectrum of the system can be empty set, or is consists of one-eigenvalue, or is consists of two eigenvalues, or is consists of three eigenvalues. For investigation the structure of essential spectra and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model.
文摘In this paper, we develop some operational calculus inspired from the Fredholm operator theory to investigate the S-essential spectra of the sum and the product of two operators acting on a Banach space. Furthermore, we apply the obtained results to determine the S-essential spectra of an integro-differential operator with abstract boundary conditions in L1([-a,a]×[-1,1])(a〉0).
文摘We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.
文摘In the present paper, we define the S-left and the S-right essential spectra of a linear operator and we study the stability of the S-essential spectra on a Banach space.
文摘A class of meta-invariant operators over Cayley-Dickson algebra is studied. Their spectral theory is investigated. More- over, theorems about spectra of generalized unitary operators and their semigroups are demonstrated.
文摘In [Perturbation of Spectrums of 2 × 2 Operator Matrices, Proceedings of the American Mathematical Society, Vol. 121, 1994], the authors asked whether there was an operator ?such that ?for a given pair?(A,B)?of operators, where the operator ?was defined by . In this note, a partial answer for the question is given.
文摘In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solutions of the equation and its adjoint are in (the limit circle case) that all well-posed extensions of the minimal operator have resolvents which are HilbertSchmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. These results extend those of formally symmetric expression studied in [1-10] and those of general quasi-differential expressions in [11-19].
文摘In the study by Baliarsingh and Dutta [Internat. J.Anal., Vol.2014(2014), Article ID 786437], the authors computed the spectrum and the fine spectrum of the product operator G (u, v; A) over the sequence space e1. The product operator G (u, v; △) over l1 is defined by (G(u,v;△)x)k=^k∑i=0ukvi(xi- xi-1) with xk = 0 for all k 〈 0, where x = (xk)∈e1,and u and v axe either constant or strictly decreasing sequences of positive real numbers satisfying certain conditions. In this article we give some improvements of the computation of the spectrum of the operator G (u, v; △) on the sequence space gl.
文摘In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.
文摘In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.
文摘This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show that operators on the proposed ω-OCPn are densely defined and closed. Several existing results in the literature are contained in this work.
文摘In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.
文摘The pseudo Hermiticity with respect to the exchange operators of N-D complexHamiltonians is investigated. It is shown that if an N-D Hamiltonian is pseudo Hermitian and anyeigenfunction of it retains π_αT symmetry then the corresponding eigen value is real, where π_αis an exchange operator with respect to the permutation a of coordinates and T is the time reversaloperator. We construct a special class of N-D pseudo Hermitian Hamiltonians with respect to exchangeoperators from both N/2-D and N-D general complex Hamiltonians. Examples are presented forHamiltonians with πT symmetry (π : x reversible y, p_x reversible p_y) and the reality of thesesystems are investigated.
基金the National Natural Science Foundation of China under Grant No.10562002the Natural Science Foundation of Inner Mongolia under Grant No.200508010103
文摘In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dimensionalHamiltonian operator associated with plane elasticity equations without the body force is invertible,and the spectrumof which is non-empty and is a subset of R.
基金Lucian Blaga University of Sibiu&Hasso Plattner Foundation Research Grants LBUS-IRG-2020-06.
文摘New fractional operators, the COVID-19 model has been studied in this paper. By using different numericaltechniques and the time fractional parameters, the mechanical characteristics of the fractional order model areidentified. The uniqueness and existence have been established. Themodel’sUlam-Hyers stability analysis has beenfound. In order to justify the theoretical results, numerical simulations are carried out for the presented methodin the range of fractional order to show the implications of fractional and fractal orders.We applied very effectivenumerical techniques to obtain the solutions of themodel and simulations. Also, we present conditions of existencefor a solution to the proposed epidemicmodel and to calculate the reproduction number in certain state conditionsof the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered foranalysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in theCommunity. For this reason, we employed the COVID-19 fractal fractional derivative model in the example ofWuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractionaloperators can facilitate the improvement of decision-making for measures to be taken in the management of anepidemic situation.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
文摘In this paper, by initiative research on local spectral theory of total class wF(p, r, q) operators, we get some important results. Such as total class wF(p, r,q) operators is normaloid operator, the local spectral subspace of total class wF(p, r, q) operators is equal to the space EλH(Eλ the Reisz idempotent, with respect to λ1, of T), total class wF(p, r, q) operators has finite ascent, and so on.