期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm
1
作者 Chen Zhang Liming Liu +5 位作者 Yufei Yang Yu Sun Jiaxu Ning Yu Zhang Changsheng Zhang Ying Guo 《Computers, Materials & Continua》 SCIE EI 2024年第6期5201-5223,共23页
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in... The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability. 展开更多
关键词 Flying foxes optimization(FFO)algorithm opposition-based learning niching techniques swarm intelligence metaheuristics evolutionary algorithms
下载PDF
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
2
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 Spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
下载PDF
An Improved Gorilla Troops Optimizer Based on Lens Opposition-Based Learning and Adaptive β-Hill Climbing for Global Optimization
3
作者 Yaning Xiao Xue Sun +3 位作者 Yanling Guo Sanping Li Yapeng Zhang Yangwei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期815-850,共36页
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ... Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks. 展开更多
关键词 Gorilla troops optimizer circle chaotic mapping lens opposition-based learning adaptiveβ-hill climbing
下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem
4
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
下载PDF
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
5
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
6
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
OBL教学理念用于留学生经络腧穴教学的初步尝试 被引量:4
7
作者 王丽祯 张海蒙 《上海针灸杂志》 2015年第9期896-898,共3页
基于结果的学习(OBL)教学理念自上世纪80年代以来在全球范围内被作为一种系统的方法运用于学校的教学改革。它以学生学习的预期成果出发,强调学生的学习,教学目标是学生能将理解并掌握的知识转化成某项技能的实际运用而非教师传授知识... 基于结果的学习(OBL)教学理念自上世纪80年代以来在全球范围内被作为一种系统的方法运用于学校的教学改革。它以学生学习的预期成果出发,强调学生的学习,教学目标是学生能将理解并掌握的知识转化成某项技能的实际运用而非教师传授知识。因此在强调实践的医学本科教育中广受推崇。《经络腧穴学》是针灸学的基础理论课程,亦是中医学的必要组成部分,是来华留学生学习中医的必修课程。作者引入了OBL教学理论,对该门课程的教学和评估策略进行了探索性的改革,以实践操作能力为预期结果,逆向设计课堂教学和考核评价。 展开更多
关键词 经络腧穴 留学生 教育 针灸 教学方法 基于结果的学习
下载PDF
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
8
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible JOB-SHOP scheduling HARMONY SEARCH (HS) algorithm PARETO OPTIMALITY opposition-based learning
下载PDF
Comparative study of low NO_(x) combustion optimization of a coal-fired utility boiler based on OBLPSO and GOBLPSO
9
作者 Li Qingwei Liu Zhi He Qifeng 《Journal of Southeast University(English Edition)》 EI CAS 2021年第3期285-289,共5页
To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized oppositio... To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized opposition-based learning(GOBLPSO)to a low NO_(x) combustion optimization area.Thermal adjustment tests under different ground conditions,variable oxygen conditions,variable operation modes of coal pulverizer conditions,and variable first air pressure conditions were carried out on a 660 MW boiler to obtain samples of combustion optimization.The adaptability of PSO,differential evolution algorithm(DE),OBLPSO,and GOBLPSO was compared and analyzed.Results of 51 times independently optimized experiments show that PSO is better than DE,while the performance of the GOBLPSO algorithm is generally better than that of the PSO and OBLPSO.The median-optimized NO_(x) emission by GOBLPSO is up to 15.8 mg/m^(3) lower than that obtained by PSO.The generalized opposition-based learning can effectively utilize the information of the current search space and enhance the adaptability of PSO to the low NO_(x) combustion optimization of the studied boiler. 展开更多
关键词 NO_(x) emissions combustion optimization particle swarm optimization opposition-based learning generalized opposition-based learning
下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
10
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 Harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
下载PDF
增强蒲公英算法优化乳腺癌图像多阈值分割
11
作者 王正红 王丹 胡容俊 《计算机系统应用》 2024年第1期148-156,共9页
针对显微镜下乳腺癌病理组织图像结构复杂,细胞边界模糊等情况,基于传统的阈值分割在乳腺癌图像的分割应用中不能很好地实现把病灶区准确分离开来的问题,提出一种基于增强蒲公英优化算法(IDO)的乳腺癌图像多阈值分割方法.该方法引入IDO... 针对显微镜下乳腺癌病理组织图像结构复杂,细胞边界模糊等情况,基于传统的阈值分割在乳腺癌图像的分割应用中不能很好地实现把病灶区准确分离开来的问题,提出一种基于增强蒲公英优化算法(IDO)的乳腺癌图像多阈值分割方法.该方法引入IDO计算类间方差的最大值(Otsu)作为目标函数寻找最佳阈值,IDO建立回守策略解决传统蒲公英算法(DO)无限制搜索,超出像素范围的问题;引入对立式学习(OBL)避免算法陷入局部最优.实验结果表明,与哈里斯鹰算法(HHO)、人工猩猩部队优化算法(GTO)、传统蒲公英优化算法(DO)、海洋捕食者算法(MPA)相比,在相同阈值个数情况下IDO算法适应度值最大、收敛最快,并且在峰值信噪比(PSNR)、结构相似度(FSIM)、特征相似度(SSIM)这3个性能指标上也比其他对比算法更具有优势. 展开更多
关键词 增强蒲公英优化算法 多阈值分割 乳腺癌图像 对立式学习 回守策略
下载PDF
应用精英反向学习的混合烟花爆炸优化算法 被引量:19
12
作者 王培崇 高文超 +2 位作者 钱旭 苟海燕 汪慎文 《计算机应用》 CSCD 北大核心 2014年第10期2886-2890,共5页
针对烟花爆炸优化(FEO)算法容易早熟、解精度低的弱点,提出了一种精英反向学习(OBL)的解空间搜索策略。在每次迭代过程中均对当前最佳个体执行反向学习,生成其动态搜索边界内的反向搜索种群,引导算法向包含全局最优的解空间逼近,以提高... 针对烟花爆炸优化(FEO)算法容易早熟、解精度低的弱点,提出了一种精英反向学习(OBL)的解空间搜索策略。在每次迭代过程中均对当前最佳个体执行反向学习,生成其动态搜索边界内的反向搜索种群,引导算法向包含全局最优的解空间逼近,以提高算法的平衡和探索能力。为了保持种群的多样性,计算种群内个体对当前最佳个体的突跳概率,并依据此概率值采用轮盘赌机制选择进入子种群的个体。通过在5组标准测试函数的实验仿真并与相关的算法对比,结果表明所提出的改进算法对数值优化具有更高的收敛速度和收敛精度,适合求解高维的数值优化问题。 展开更多
关键词 烟花爆炸优化 精英个体 反向学习 轮盘赌选择
下载PDF
应用佳点集的混合反向学习人工鱼群算法 被引量:11
13
作者 王培崇 李丽荣 +1 位作者 高文超 汪慎文 《计算机应用研究》 CSCD 北大核心 2015年第7期1992-1995,共4页
为了改善人工鱼群算法求解精度较低、容易过早收敛的弱点,提出了一种应用佳点集和反向学习的人工鱼群算法。改进算法在迭代中对当前种群中部分优质个体执行一般动态反向学习,生成它们的反向种群,引导种群向包含全局最优的解空间逼近,以... 为了改善人工鱼群算法求解精度较低、容易过早收敛的弱点,提出了一种应用佳点集和反向学习的人工鱼群算法。改进算法在迭代中对当前种群中部分优质个体执行一般动态反向学习,生成它们的反向种群,引导种群向包含全局最优的解空间逼近,以提高算法的平衡和探索能力。当种群的拥挤程度超过阈值λ时,利用佳点集机制对大部分个体重新初始化,以帮助算法脱离局部最优的约束。在六个Benchmark函数上的实验表明,该算法收敛速度快、求解精度高,适合求解函数优化问题。 展开更多
关键词 人工鱼群算法 佳点集 反向学习 Benchmark函数
下载PDF
改进的反向蛙跳算法求解函数优化问题 被引量:9
14
作者 林娟 钟一文 马森林 《计算机应用研究》 CSCD 北大核心 2013年第3期760-763,共4页
针对混洗蛙跳算法在求解连续函数优化问题中出现的收敛速度慢、求解精度低的缺点,提出了一种基于反向学习策略的改进算法,在种群初始化和进化过程中分别加入反向操作,产生更靠近优质解的种群,从而提高了算法的全局寻优能力,促进了算法... 针对混洗蛙跳算法在求解连续函数优化问题中出现的收敛速度慢、求解精度低的缺点,提出了一种基于反向学习策略的改进算法,在种群初始化和进化过程中分别加入反向操作,产生更靠近优质解的种群,从而提高了算法的全局寻优能力,促进了算法收敛。实验仿真表明,新算法在寻优效率、计算精度等方面均优于原算法。 展开更多
关键词 混洗蛙跳算法 反向学习 函数优化
下载PDF
基于PSO与对立学习的细菌觅食算法 被引量:6
15
作者 麦雄发 李玲 彭昱忠 《计算机工程》 CAS CSCD 北大核心 2011年第23期171-173,共3页
为提高细菌觅食算法处理高维问题时的收敛速度及精度,提出一种基于粒子群优化算法和对立学习的细菌觅食算法PO-BFA。在种群初始化阶段采用对立学习取代随机初始化,在进化过程中利用对立学习进行种群动态跳跃,以提高算法的收敛速度,并以... 为提高细菌觅食算法处理高维问题时的收敛速度及精度,提出一种基于粒子群优化算法和对立学习的细菌觅食算法PO-BFA。在种群初始化阶段采用对立学习取代随机初始化,在进化过程中利用对立学习进行种群动态跳跃,以提高算法的收敛速度,并以粒子移动代替细菌的趋化操作,由此省略细菌前进操作。基于6个高维Benchmark函数的实验结果表明,该算法的收敛速度和精度均优于同类算法。 展开更多
关键词 细菌觅食算法 粒子群优化 对立学习 动态跳跃 趋化
下载PDF
具有反向学习和自适应逃逸功能的粒子群优化算法 被引量:7
16
作者 吕莉 赵嘉 孙辉 《计算机应用》 CSCD 北大核心 2015年第5期1336-1341,共6页
为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标... 为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标准粒子群优化算法的进化模式;当粒子陷入"早熟"状态,运用反向学习和自适应逃逸功能,对个体最优位置进行反向学习,产生粒子的反向解,增加粒子的反向学习能力,增强算法逃离局部最优的能力,提高算法寻优率。在固定评估次数的情况下,对8个基准测试函数进行仿真,实验结果表明:所提算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于多种经典粒子群优化算法,如充分联系的粒子群优化算法(FIPS)、基于时变加速度系数的自组织分层粒子群优化算法(HPSO-TVAC)、综合学习的粒子群优化算法(CLPSO)、自适应粒子群优化算法(APSO)、双中心粒子群优化算法(DCPSO)和具有快速收敛和自适应逃逸功能的粒子群优化算法(FAPSO)等。 展开更多
关键词 粒子群优化算法 反向学习 算法状态 自适应逃逸
下载PDF
基于改进鲸鱼算法优化支持向量机的故障诊断的研究与应用 被引量:13
17
作者 李慧 徐海亮 +1 位作者 王浩 李佳男 《科学技术与工程》 北大核心 2022年第13期5284-5290,共7页
故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector mach... 故障诊断在工业生产过程中具有很重要的作用,尤其是对于要求比较高的分子蒸馏来说,微小的故障都会造成其提纯率,因此提出一种基于改进鲸鱼算法优化支持向量机的故障分类方法(improved whale optimization algorithm-support vector machine,IWOA-SVM),加入反向学习策略和对数权重因子到普通鲸鱼算法中。首先,用反向学习策略(opposition-based learning,OBL)代替随机初始种群,用反向学习策略选取出反向种群,对种群进行择优选择,一方面OBL能够高效地提高群智能算法的全局搜索能力,另一方面提高鲸鱼算法在重复迭代中的多样性,使其跳出局部最优解;其次,引入自适应权重因子并将其加入到鲸鱼优化算法中,利用权重因子的动态变化,很大程度上增强了全局搜索能力;最后,采用改进之后的鲸鱼算法对SVM的参数进行寻优,并利用优化之后的支持向量机对刮膜蒸发过程获得的故障数据进行诊断识别,将IWOA-SVM的结果与其他3种做对比。结果表明,IWOA-SVM算法分类准确率提升了2%,且其准确率保持在98%以上,在分类结果的准确性以及算法的鲁棒性方面优于其他算法。 展开更多
关键词 鲸鱼优化算法(WOA) 支持向量机(SVM) 故障分类 反向学习(obl) 自适应权重因子
下载PDF
以器官系统为中心的教学模式在泌尿外科临床实习教学中的应用 被引量:6
18
作者 张俊勇 姜庆 《海南医学》 CAS 2018年第7期1021-1023,共3页
目的探讨在泌尿外科本科实习带教中应用"以器官系统为中心"(OBL)的教学模式对提高教学质量的效果。方法将2015年1月至2017年1月于重庆医科大学附属第二医院泌尿外科实习的临床医学专业五年制本科生96人,采用随机数表法分为传... 目的探讨在泌尿外科本科实习带教中应用"以器官系统为中心"(OBL)的教学模式对提高教学质量的效果。方法将2015年1月至2017年1月于重庆医科大学附属第二医院泌尿外科实习的临床医学专业五年制本科生96人,采用随机数表法分为传统培养组(A组)和OBL培养组(B组),每组48人。通过入科前统一理论考试,评价两组学生泌尿外科基础知识水平。入科后对A组采用传统带教,对B组行OBL培养模式。通过"两站式"出科考试比较两组学生实习成绩,并以问卷调查模式评价学生实习满意度。结果 A组和B组学生入科前的泌尿外科基础知识水平分别为(76.88±10.98)分和(79.62±9.03)分,差异无统计学意义(P>0.05);B组学生出科理论考试成绩为(81.81±9.40)分,明显高于A组的(75.81±8.68)分,差异有统计学意义(P<0.05),但操作考试成绩两组比较差异无统计学意义(P>0.05);整体综合成绩B组为(82.58±7.05)分,明显高于A组的(78.90±6.88)分,差异有统计学意义(P<0.05);调查问卷结果示,B组学生对教学的满意度均明显优于A组,差异有统计学意义(P<0.05)。结论 "以器官系统为中心"的培养模式,有利于学生从原理上系统掌握泌尿外科临床知识,提高临床培养效率,提高泌尿外科临床实习的教学质量。 展开更多
关键词 以器官系统为中心 泌尿外科 教学模式
下载PDF
以《消化系统整合课程》为例初步探究基础医学整合课程教学 被引量:9
19
作者 徐有志 张凤云 路文杰 《医学教育研究与实践》 2021年第4期537-542,共6页
目的以《消化系统整合课程》为例探讨在以器官系统为中心(OBL)的医学整合课程教学模式中如何有机地融入传统病理生理学教学内容,以期为医学整合课程体系教学改革提供参考建议。方法我校为适应新时代医学高等教育的教学改革需要,以OBL开... 目的以《消化系统整合课程》为例探讨在以器官系统为中心(OBL)的医学整合课程教学模式中如何有机地融入传统病理生理学教学内容,以期为医学整合课程体系教学改革提供参考建议。方法我校为适应新时代医学高等教育的教学改革需要,以OBL开展整合课程教学改革,并设置了整合课程小班制改革班。与常规班比较,观察评价的指标主要有教师对以问题为导向教学法的评价、学生的消化系统整合课考试成绩、小班制课改班学生的问卷调查结果等。结果教师对学生PBL的评价在“主动积极思考和针对性发言、培养医学素养和提高综合能力”等方面评价有统计意义(P<0.05);小班制的课改班学生的消化系统整合课程考试成绩差异无统计意义(P>0.05)。结论以OBL的医学整合课程《消化系统整合课程》教学改革有利于提升学生综合应用所学知识分析和解决消化系统相关基础与临床问题的能力,且能在提高医学生综合素养的同时激起学习《消化系统整合课程》的兴趣,但对于应试能力的培养效果不明显。 展开更多
关键词 病理生理学 基础医学 整合课程 以器官系统为中心(obl)
下载PDF
基于自适应反向学习的多目标分布估计算法 被引量:3
20
作者 李二超 杨蓉蓉 《计算机应用》 CSCD 北大核心 2021年第1期15-21,共7页
针对基于规则模型的多目标分布估计算法全局收敛性较弱的缺陷,提出了一种基于自适应反向学习(OBL)的多目标分布估计算法。该算法根据函数变化率的大小来决定是否进行OBL:当函数变化率较小时,算法可能陷入局部最优,所以进行OBL以提高当... 针对基于规则模型的多目标分布估计算法全局收敛性较弱的缺陷,提出了一种基于自适应反向学习(OBL)的多目标分布估计算法。该算法根据函数变化率的大小来决定是否进行OBL:当函数变化率较小时,算法可能陷入局部最优,所以进行OBL以提高当前种群中个体的多样性;当函数变化率较大时,运行基于规则模型的多目标分布估计算法。所提算法通过适时地引入OBL策略,减小了种群多样性及个体的分布情况对优化算法整体收敛质量以及收敛速度的影响。为了验证改进算法的性能,选取基于规则模型的多目标分布估计算法(RM-MEDA)、摸石头过河算法与分布估计混合算法(HWSA-EDA)以及基于逆建模的多目标进化算法(IM-MOEA)作为对比算法与所提算法分别在ZDT和DTLZ测试函数上进行测试。测试结果表明,除了在DTLZ2函数上以外,所提算法不仅有良好的全局收敛性,而且解的分布性和均匀性都有所提高。 展开更多
关键词 多目标优化问题 局部最优 反向学习 种群多样性 收敛性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部