期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The progress in optic nerve regeneration, where are we? 被引量:4
1
作者 Jennifer Wei Huen Shum Kai Liu Kwok-fai So 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期32-36,共5页
Optic nerve regeneration is an important area of research. It can be used to treat patients suffering from optic neuropathy and provides insights into the treatment of numerous neurodegenerative diseases. There are ma... Optic nerve regeneration is an important area of research. It can be used to treat patients suffering from optic neuropathy and provides insights into the treatment of numerous neurodegenerative diseases. There are many hurdles impeding optic regeneration in mammals. The mammalian central nervous system is non-permissive to regeneration and intrinsically lacks the capacity for axonal regrowth. Any axonal injury also triggers a vicious cycle of apoptosis. Understanding these hurdles provides us with a rough framework to appreciate the essential steps to bring about optic nerve regeneration: enhancing neuronal survival, axon regeneration, remyelination and establishing functional synapses to the original neuronal targets. In this review article, we will go through current potential treatments for optic nerve regeneration, which includes neurotrophic factor provision, inflammatory stimulation, growth inhibition suppression, intracellular signaling modification and modeling of bridging substrates. 展开更多
关键词 optic nerve regeneration axonal regeneration neurotrophic factor inflammatory stimulation nerve bridging substances
下载PDF
Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve 被引量:2
2
作者 Wei-Yang Shao Xiao Liu +4 位作者 Xian-Liang Gu Xi Ying Nan Wu Hai-Wei Xu Yi Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第7期955-966,共12页
AIM:To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush(ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration.METHODS:ONC was established on the Sprague... AIM:To explore the effects of αA-crystallin in astrocyte gliosis after optic nerve crush(ONC) and the mechanism of α-crystallin in neuroprotection and axon regeneration.METHODS:ONC was established on the SpragueDawley rat model and αA-crystallin(10 -4 g/L,4 μL) was intravitreously injected into the rat model.Flash-visual evoked potential(F-VEP) was examined 14 d after ONC,and the glial fibrillary acidic protein(GFAP) levels in the retina and crush site were analyzed 1,3,5,7 and 14 d after ONC by immunohistochemistry(IHC) and Western blot respectively.The levels of beta Tubulin(TUJ1),growth-associated membrane phosphoprotein-43(GAP-43),chondroitin sulfate proteoglycans(CSPGs) and neurocan were also determined by IHC 14 d after ONC.RESULTS:GFAP level in the retina and the optic nerve significantly increased 1d after ONC,and reached the peak level 7d post-ONC.Injection of αA-crystallin significantly decreased GFAP level in both the retina and the crush site 3d after ONC,and induced astrocytes architecture remodeling at the crush site.Quantification of retinal ganglion cell(RGC) axons indicated αAcrystallin markedly promoted axon regeneration in ONC rats and enhanced the regenerated axons penetrated into the glial scar.CSPGs and neurocan expression also decreased 14 d after αA-crystallin injection.The amplitude(N1-P1) and latency(P1) of F-VEP were also restored.CONCLUSION:Our results suggest α-crystallin promotes the axon regeneration of RGCs and suppresses the activation of astrocytes. 展开更多
关键词 αA-crystallin axonal regeneration astrocyte glial scar chondroitin sulfate proteoglycans optic nerve crush
下载PDF
A novel viewpoint in glaucoma therapeutics: enriched environment 被引量:1
3
作者 María F.González Fleitas Damián Dorfman Ruth E.Rosenstein 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第7期1431-1439,共9页
Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pre... Glaucoma is one of the world’s most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons.Despite glaucoma’s most accepted risk factor is increased intraocular pressure(IOP),the mechanisms behind the disease have not been fully elucidated.To date,IOP lowering remains the gold standard;however,glaucoma patients may still lose vision regardless of effective IOP management.Therefore,the exclusive IOP control apparently is not enough to stop the disease progression,and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance.Besides pharmacological treatments,environmental conditions have been shown to prevent neurodegeneration in the central nervous system.In this review,we discuss current concepts on key pathogenic mechanisms involved in glaucoma,the effect of enriched environment on these mechanisms in different experimental models,as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage.Finally,we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease,preventing glaucoma-induced terrible sequelae resulting in permanent visual disability. 展开更多
关键词 brain-derived neurotrophic factor chondroitin sulfate enriched environment GLAUCOMA optic nerve axons optic nerve glia retinal ganglion cells visual stimulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部