期刊文献+
共找到2,884篇文章
< 1 2 145 >
每页显示 20 50 100
A Prediction Model for Detecting Dysthyroid Optic Neuropathy Based on Clinical Factors and Imaging Markers of the Optic Nerve and Cerebrospinal Fluid in the Optic Nerve Sheath
1
作者 Hong-yu WU Ban LUO +7 位作者 Gang YUAN Qiu-xia WANG Ping LIU Ya-li ZHAO Lin-han ZHAI Wen-zhi LV Jing ZHANG Lang CHEN 《Current Medical Science》 SCIE CAS 2024年第4期827-832,共6页
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she... Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON. 展开更多
关键词 dysthyroid optic neuropathy magnetic resonance imaging water-fat sequence optic nerve optic nerve subarachnoid space
下载PDF
Repeatability,interocular correlation and agreement of optic nerve head vessel density in healthy eyes:a sweptsource optical coherence tomographic angiography study
2
作者 Dan-Qi Fang Da-Wei Yang +2 位作者 Xiao-Ting Mai Carol Y Cheung Hao-Yu Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期896-903,共8页
AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-thre... AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate. 展开更多
关键词 interocular correlation REPEATABILITY optic nerve head optical coherence tomography angiography vessel density
下载PDF
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
3
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
下载PDF
Effect of a cervical collar on optic nerve sheath diameter in trauma patients
4
作者 Mümin Murat Yazici Ozcan Yavasi 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第2期126-130,共5页
BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference ... BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis. 展开更多
关键词 optic nerve sheath diameter Computed tomography TRAUMA Emergency medicine
下载PDF
Mesenchymal stem cells for repairing glaucomatous optic nerve
5
作者 Bai-Yu Hu Mei Xin +2 位作者 Ming Chen Ping Yu Liu-Zhi Zeng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期748-760,共13页
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.Ho... Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells. 展开更多
关键词 stem cell GLAUCOMA retinal ganglion cell optic nerve axon regeneration
下载PDF
Optic nerve sheath diameters in nontraumatic brain injury:A scoping review and role in the intensive care unit
6
作者 Madhura Bhide Deven Juneja +1 位作者 Omender Singh Shakya Mohanty 《World Journal of Critical Care Medicine》 2024年第3期75-90,共16页
BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic n... BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients. 展开更多
关键词 Intracranial hypertension Intracranial pressure monitoring Medical intensive care unit Neuro-monitoring Nontraumatic brain injury optic nerve sheath diameter optic nerve ultrasound
下载PDF
The role of monocytes in optic nerve injury 被引量:2
7
作者 Xiangxiang Liu Yuan Liu +1 位作者 Mohamed M.Khodeiry Richard K.Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1666-1671,共6页
Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuro... Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuronal inflammation,cell proliferation and differentiation,scar formation and tissue remodeling following optic nerve injury.However,microglia and macrophages have distinct functions which can be either beneficial or detrimental to the optic nerve depending on the spatial context and temporal sequence of their activity.These divergent effects are attributed to pro-and anti-inflammatory cytokines expressed by monocytes,crosstalk between monocyte and glial cells and even microglia-macrophage communication.In this review,we describe the dynamics and functions of microglia and macrophages in neuronal inflammation and regeneration following optic nerve injury,and their possible role as therapeutic targets for axonal regeneration. 展开更多
关键词 fibrotic scar glial scar INFLAMMATION MACROPHAGE MICROGLIA optic nerve injury REGENERATION
下载PDF
Quantifying peripapillary vessel density and retinal nerve fibre layer in type 1 diabetic children without clinically detectable retinopathy using OCTA
8
作者 Ling Chen Yun Feng +2 位作者 Sha-Sha Zhang Yan-Fang Liu Ping Lin 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期278-281,共4页
AIM:To quantify changes in radial peripapillary capillary vessel density(ppVD)and the peripapillary retinal nerve fiber layer(pRNFL)in children with type 1 diabetes without clinical diabetic retinopathy by optical coh... AIM:To quantify changes in radial peripapillary capillary vessel density(ppVD)and the peripapillary retinal nerve fiber layer(pRNFL)in children with type 1 diabetes without clinical diabetic retinopathy by optical coherence tomography angiography(OCTA),providing a basis for early retinopathy in children with type 1 diabetes.METHODS:This was a retrospective study.A total of 30 patients(3–14y)with type 1 diabetes without clinical diabetic retinopathy(NDR group)were included.A total of 30 age-matched healthy subjects were included as the normal control group(CON group).The HbA1c level in the last 3mo was measured once in the NDR group.The pRNFL thickness and ppVD were automatically measured,and the mean pRNFL and ppVD were calculated in the nasal,inferior,temporal,and superior quadrants.The changes in ppVD and pRNFL in the two groups were analyzed.RESULTS:Compared with CON group,the nasal and superior ppVDs decreased in the NDR group(all P<0.01).The thickness of the nasal pRNFL decreased significantly(P<0.01),while the inferior,temporal and superior pRNFLs slightly decreased but not significant in the NDR group(all P>0.05).Person and Spearman correlation analysis of ppVD and pRNFL thickness in each quadrant of the NDR group showed a positive correlation between nasal and superior(all P<0.01),while inferior and temporal had no significant correlation(all P>0.05).There was no significant correlation between the HbA1c level and ppVD and pRNFL in any quadrant(all P>0.05).There was no significant correlation between the course of diabetes mellitus and ppVD and pRNFL in any quadrant(all P>0.05).CONCLUSION:ppVD and pRNFL decrease in eyes of children with type 1 diabetes before clinically detectable retinopathy and OCTA is helpful for early monitoring. 展开更多
关键词 diabetic retinopathy CHILDREN peripapillary vessel density peripapillary retinal nerve fiber layer optical coherence tomography angiography
下载PDF
Selective deletion of zinc transporter 3 in amacrine cells promotes retinal ganglion cell survival and optic nerve regeneration after injury 被引量:2
9
作者 Zhe Liu Jingfei Xue +10 位作者 Canying Liu Jiahui Tang Siting Wu Jicheng Lin Jiaxu Han Qi Zhang Caiqing Wu Haishun Huang Ling Zhao Yehong Zhuo Yiqing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2773-2780,共8页
Vision depends on accurate signal conduction from the retina to the brain through the optic nerve,an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cel... Vision depends on accurate signal conduction from the retina to the brain through the optic nerve,an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells.The mammalian optic nerve,an important part of the central nervous system,cannot regenerate once it is injured,leading to permanent vision loss.To date,there is no clinical treatment that can regenerate the optic nerve and restore vision.Our previous study found that the mobile zinc(Zn^(2+))level increased rapidly after optic nerve injury in the retina,specifically in the vesicles of the inner plexiform layer.Furthermore,chelating Zn^(2+)significantly promoted axonal regeneration with a long-term effect.In this study,we conditionally knocked out zinc transporter 3(ZnT3)in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines(VGAT^(Cre)ZnT3^(fl/fl)and VGLUT2^(Cre)ZnT3^(fl/fl),respectively).We obtained direct evidence that the rapidly increased mobile Zn^(2+)in response to injury was from amacrine cells.We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury,improved retinal ganglion cell function,and promoted vision recovery.Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn^(2+)affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons,regulated the synaptic connection between amacrine cells and retinal ganglion cells,and affected the fate of retinal ganglion cells.These results suggest that amacrine cells release Zn^(2+)to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells,thereby influencing the synaptic plasticity of retinal networks.These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks. 展开更多
关键词 axonal regeneration conditional knockout NEUROTRANSMITTER optic nerve injury presynaptic neuron retinal network synaptic connection synaptic vesicles visual acuity zinc transporter 3
下载PDF
Evaluation of optic nerve head vessels density changes after phacoemulsification cataract surgery using optical coherence tomography angiography 被引量:1
10
作者 Ze-Hui Zhu Yin-Ying Zhao +4 位作者 Rui Zou Han Zou Jia-Yan Fang Ping-Jun Chang Yun-E Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第6期884-890,共7页
·AIM:To evaluate optic nerve head(ONH)vessel density(VD)changes after cataract surgery using optical coherence tomography angiography(OCTA).·METHODS:This was a prospective observational study.Thirty-four eye... ·AIM:To evaluate optic nerve head(ONH)vessel density(VD)changes after cataract surgery using optical coherence tomography angiography(OCTA).·METHODS:This was a prospective observational study.Thirty-four eyes with mild/moderate cataracts were included.ONH scans were obtained before and 3mo after cataract surgery using OCTA.Radial peripapillary capillary(RPC)density,all VD,large VD and retinal nerve fiber layer thickness(RNFLT)in total disc,inside disc,and different peripapillary sectors were assessed and analyzed.Image quality score(QS),fundus photography grading and bestcorrected visual acuity(BCVA)were also collected,and correlation analyses were performed between VD change and these parameters.·RESULTS:Compared with baseline,both RPC and all VD increased in inside disc area 3mo postoperatively(from 47.5%±5.3%to 50.2%±3.7%,and from 57.87%±4.30%to 60.47%±3.10%,all P<0.001),but no differences were observed in peripapillary area.However,large VD increased from 5.63%±0.77%to 6.47%±0.72%in peripapillary ONH region(P<0.001).RPC decreased in inferior and superior peripapillary ONH parts(P=0.019,<0.001 respectively).There were obvious negative correlations between RPC change and large VD change in inside disc,superior-hemi,and inferior-hemi(r=-0.419,-0.370,and-0.439,P=0.017,0.044,and 0.015,respectively).No correlations were found between VD change and other parameters including QS change,fundus photography grading,postoperative BCVA,and postoperative peripapillary RNFLT.·CONCLUSION:RPC density and all VD in the inside disc ONH region increase 3mo after surgery in patients with mild to moderate cataract.No obvious VD changes are found in peripapillary area postoperatively. 展开更多
关键词 PHACOEMULSIFICATION CATARACT optical coherence tomography angiography vessel density optic nerve head
下载PDF
Changes of optic nerve head microcirculation in high myopia 被引量:1
11
作者 Wen-Quan Tang Yu-Lin Luo +1 位作者 Xi-Lang Wang Xuan-Chu Duan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第1期102-107,共6页
AIM:To analyze the correlation of age,spherical equivalent(SE),and axial length(AL)with the microcirculation of optic nerve head(ONH)in high myopia(HM).METHODS:In this cross-sectional clinical study,164 right eyes wer... AIM:To analyze the correlation of age,spherical equivalent(SE),and axial length(AL)with the microcirculation of optic nerve head(ONH)in high myopia(HM).METHODS:In this cross-sectional clinical study,164 right eyes were included.Optical coherence tomography angiography(OCTA)was used to detect ONH vessel density.Eyes were classified based on age,SE,and AL.Groups of Age1,Age2,and Age3 were denoted for age classification(Age1<20y,20y≤Age2<30y,Age3≥30y);Groups SE1,SE2,and SE3 for the SE classification(-9≤SE1<-6 D,-12≤SE2<-9 D,SE3<-12 D);Groups AL1,AL2,AL3,and AL4 for the AL classification(AL1<26 mm,26≤AL2<27 mm,27≤AL3<28 mm,AL4≥28 mm).RESULTS:No significant difference was observed in vessel density among the Age1,Age2,and Age3 groups(all P>0.05)and the SE1,SE2,and SE3 groups(all P>0.05).No significant difference was observed in the intrapapillary vascular density(IVD)among AL1,AL2,AL3,and AL4 groups(P>0.05).However,a significant decrease was found in the peripapillary vascular density(PVD)in the AL1,AL2,AL3,and AL4 groups(F=3.605,P=0.015),especially in the inferotemporal(IT;F=6.25,P<0.001),temporoinferior(TI;F=2.865,P=0.038),and temporosuperior(TS;F=6.812,P<0.001)sectors.The IVD was correlated with age(r=-0.190,P<0.05)but not with SE or AL(P>0.05).The PVD was correlated with AL(r=-0.236,P<0.01)but not with age or SE(P>0.05).CONCLUSION:With the increase of AL,the IVD remains stable while the PVD decreases,especially in the three directions of temporal(IT,TI,and TS).The main cause of microcirculation reduction may be related to AL elongation rather than an increase in age or SE. 展开更多
关键词 high myopia optic nerve head optical coherence tomography angiography vascular density axial length
下载PDF
Optic nerve injury-induced regeneration in the adult zebrafish is accompanied by spatiotemporal changes in mitochondrial dynamics 被引量:1
12
作者 An Beckers Luca Masin +7 位作者 Annelies Van Dyck Steven Bergmans Sophie Vanhunsel Anyi Zhang Tine Verreet Fabienne EPoulain Karl Farrow Lieve Moons 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期219-225,共7页
Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope ... Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope with this high energy demand.We previously showed that in adult zebrafish,subjected to an optic nerve crush,an antagonistic axon-dendrite interplay exists wherein the retraction of retinal ganglion cell dendrites is a prerequisite for effective axonal repair.We postulate a‘dendrites for regeneration’paradigm that might be linked to intraneuronal mitochondrial reshuffling,as ganglion cells likely have insufficient resources to maintain dendrites and restore axons simultaneously.Here,we characterized both mitochondrial distribution and mitochondrial dynamics within the different ganglion cell compartments(dendrites,somas,and axons)during the regenerative process.Optic nerve crush resulted in a reduction of mitochondria in the dendrites during dendritic retraction,whereafter enlarged mitochondria appeared in the optic nerve/tract during axonal regrowth.Upon dendritic regrowth in the retina,mitochondrial density inside the retinal dendrites returned to baseline levels.Moreover,a transient increase in mitochondrial fission and biogenesis was observed in retinal ganglion cell somas after optic nerve damage.Taken together,these findings suggest that during optic nerve injury-induced regeneration,mitochondria shift from the dendrites to the axons and back again and that temporary changes in mitochondrial dynamics support axonal and dendritic regrowth after optic nerve crush. 展开更多
关键词 axonal regeneration central nervous system dendrite remodeling energy metabolism FISSION mitochondria mitochondrial trafficking optic nerve crush retina zebrafish
下载PDF
Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush 被引量:2
13
作者 Feng Pan Dan Hu +3 位作者 Li-Juan Sun Qian Bai Yu-Sheng Wang Xu Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1607-1612,共6页
The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neuro... The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury.Valproate is a histone deacetylase inhibitor and multitarget drug,which has been demonstrated to protect retinal neurons.In this study,we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling.We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope.Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein,phosphorylated eukaryotic translation initiation factor 2α,and caspase-12 in the endoplasmic reticulum of retinal ganglion cells.These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress.These findings represent a newly discovered mechanism that regulates how valproate protects neurons. 展开更多
关键词 APOPTOSIS C/EBP homologous protein CASPASE-12 endoplasmic reticulum glucose-regulated protein 78 optic nerve crush phosphorylated eukaryotic translation initiation factor retinal ganglion cells unfolded protein response valproate
下载PDF
Use of a tissue clearing technique combined with retrograde trans-synaptic viral tracing to evaluate changes in mouse retinorecipient brain regions following optic nerve crush 被引量:1
14
作者 Zong-Yi Zhan Yi-Ru Huang +9 位作者 Lu-Wei Zhao Ya-Dan Quan Zi-Jing Li Di-Fang Sun Ya-Li Wu Hao-Yuan Wu Zi-Tian Liu Kai-Li Wu Yu-Qing Lan Min-Bin Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期913-921,共9页
Successful establishment of reconnection between retinal ganglion cells and retinorecipient regions in the brain is critical to optic nerve regeneration.However,morphological assessments of retinorecipient regions are... Successful establishment of reconnection between retinal ganglion cells and retinorecipient regions in the brain is critical to optic nerve regeneration.However,morphological assessments of retinorecipient regions are limited by the opacity of brain tissue.In this study,we used an innovative tissue cleaning technique combined with retrograde trans-synaptic viral tracing to observe changes in retinorecipient regions connected to retinal ganglion cells in mice after optic nerve injury.Specifically,we performed light-sheet imaging of whole brain tissue after a clearing process.We found that pseudorabies virus 724(PRV724)mostly infected retinal ganglion cells,and that we could use it to retrogradely trace the retinorecipient regions in whole tissue-cleared brains.Unexpectedly,PRV724-traced neurons were more widely distributed compared with data from previous studies.We found that optic nerve injury could selectively modify projections from retinal ganglion cells in the hypothalamic paraventricular nucleus,intergeniculate leaflet,ventral lateral geniculate nucleus,central amygdala,basolateral amygdala,Edinger-Westphal nucleus,and oculomotor nucleus,but not the superior vestibular nucleus,red nucleus,locus coeruleus,gigantocellular reticular nucleus,or facial nerve nucleus.Our findings demonstrate that the tissue clearing technique,combined with retrograde trans-synaptic viral tracing,can be used to objectively and comprehensively evaluate changes in mouse retinorecipient regions that receive projections from retinal ganglion cells after optic nerve injury.Thus,our approach may be useful for future estimations of optic nerve injury and regeneration. 展开更多
关键词 histology image analysis light-sheet imaging optic nerve crush pseudorabies virus retinal ganglion cells three-dimensional imaging tissue clearing viral tracing whole brain study
下载PDF
Bedside ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure in nontraumatic neurocritically ill patients 被引量:1
15
作者 Madhura Bhide Omender Singh +1 位作者 Deven Juneja Amit Goel 《World Journal of Critical Care Medicine》 2023年第1期10-17,共8页
BACKGROUND Delay in treatment of raised intracranial pressure(ICP)leads to poor clinical outcomes.Optic nerve sheath diameter(ONSD)by ultrasonography(US-ONSD)has shown good accuracy in traumatic brain injury and neuro... BACKGROUND Delay in treatment of raised intracranial pressure(ICP)leads to poor clinical outcomes.Optic nerve sheath diameter(ONSD)by ultrasonography(US-ONSD)has shown good accuracy in traumatic brain injury and neurosurgical patients to diagnose raised ICP.However,there is a dearth of data in neuro-medical intensive care unit(ICU)where the spectrum of disease is different.AIM To validate the diagnostic accuracy of ONSD in non-traumatic neuro-critically ill patients.METHODS We prospectively enrolled 114 patients who had clinically suspected raised ICP due to non-traumatic causes admitted in neuro-medical ICU.US-ONSD was performed according to ALARA principles.A cut-off more than 5.7 mm was taken as significantly raised.Raised ONSD was corelated with raised ICP on radiological imaging.Clinical history,general and systemic examination findings,SOFA and APACHE 2 score and patient outcomes were recorded.RESULTS There was significant association between raised ONSD and raised ICP on imaging(P<0.001).The sensitivity,specificity,positive and negative predictive value at this cut-off was 77.55%,89.06%,84.44% and 83.82% respectively.The positive and negative likelihood ratio was 7.09 and 0.25.The area under the receiver operating characteristic curves was 0.844.Using Youden’s index the best cut off value for ONSD was 5.75 mm.Raised ONSD was associated with lower age(P=0.007),poorer Glasgow Coma Scale(P=0.009)and greater need for surgical intervention(P=0.006)whereas no statistically significant association was found between raised ONSD and SOFA score,APACHE II score or ICU mortality.Our limitations were that it was a single centre study and we did not perform serial measurements or ONSD pre-and post-treatment or procedures for raised ICP.CONCLUSION ONSD can be used as a screening a test to detect raised ICP in a medical ICU and as a trigger to initiate further management of raised ICP.ONSD can be beneficial in ruling out a diagnosis in a low-prevalence population and rule in a diagnosis in a high-prevalence population. 展开更多
关键词 Intracranial pressure Intensive care unit Neuro-critical care optic nerve sheath diameter ULTRASONOGRAPHY
下载PDF
Phosphorylated S6K1 and 4E-BP1 play different roles in constitutively active Rheb-mediated retinal ganglion cell survival and axon regeneration after optic nerve injury
16
作者 Jikuan Jiang Lusi Zhang +5 位作者 Jingling Zou Jingyuan Liu Jia Yang Qian Jiang Peiyun Duan Bing Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2526-2534,共9页
Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory ... Ras homolog enriched in brain(Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1(mTORC1).Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR.S6K1 and4E-BP1 are important downstream effectors of mTORC1.In this study,we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1in the protection of retinal ganglion cells.We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration.We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute(14 days) and chronic(21 and 42 days) stages of injury.We also found that either co-expression of the dominant-negative S6K1mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells.This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration.However,only S6K1 activation,but not 4E-BP1 knockdown,induced axon regeneration when applied alone.Furthermore,S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury,whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days postinjury.Ove rexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury.Likewise,co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury.These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rhe b/mTOR.Together,our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity.Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells. 展开更多
关键词 axon regeneration central nervous system gene therapy mRNA translation NEURODEGENERATION NEUROPROTECTION optic nerve crush Ras homolog enriched in the brain retina translation initiation
下载PDF
Meningioma of the Optical Nerves in a Case at the Hospitalier Center of Saint Denis in Ile de France
17
作者 Adama Dembele Moro Sidibe +17 位作者 Ibrahim Conaré Mamadou Kolé Sidibé Larcheveque Florence Seror Julien Abdoulaye Napo Daouda Goita Oumar Diallo Djonny Jonas Dembele Mamadou Adama Togo Kadiatou Ba Koita Abdoulaye Nouhoum Coulibaly Cheick Fantamady Tounkara Nouhoum Touré Abdoulaye Konaté Jeannette Traore Sanoussi Bamani Lamine Traoré Japhet Popanou Théra 《Open Journal of Ophthalmology》 2023年第1期23-29,共7页
Summary: Optic nerve tumors are rare tumors, representing 3% - 5% of intracranial tumors developing mainly along the optic nerve and/or the chiasm. Optic nerve meningiomas are histologically benign tumors whose severi... Summary: Optic nerve tumors are rare tumors, representing 3% - 5% of intracranial tumors developing mainly along the optic nerve and/or the chiasm. Optic nerve meningiomas are histologically benign tumors whose severity is linked to diagnostic and especially therapeutic difficulties. The Optic nerve meningioma is the second leading cause of optic nerve tumor after glioma. Observation: We report the case of a 49-year-old woman from South Asia, who consults an ophthalmology department for progressive visual loss in her right eye for about a year with her glasses and would like to renew her optical correction. Having no particular medical history apart from left unilateral blindness is known for approximately 15 years. Magnetic Resonance Imaging (IRM) cerebral found a tissue mass with a clear outline and polylobules on the left temporo-peduncular. Through this case, we describe the circumstances of discovery of the disease, the clinical characteristics, as well as our diagnostic approach. Conclusion: In the majority of cases, these are benign tumours, the circumstances of which are discovered in multiple ways. A mostly unilateral and non-improvable loss of visual acuity must attract our attention. Renewing glasses may be the reason for discovering the disease. Today Magnetic Resonance Imaging (IRM) remains an important and capital examination for the diagnosis and monitoring of this pathology. 展开更多
关键词 MENINGIOMA optic nerve Decreased Visual Acuity IRM
下载PDF
Bilateral retinal nerve fiber layer thickness reduction in a 9-year-old myopic boy suffering from unilateral optic neuritis:A case report
18
作者 Fang-Fang Zhao Shi-Qi Yao +4 位作者 Yun Wang Tai-Ping Li Jian-Feng Yang Chi-Pui Pang Ling-Ping Cen 《World Journal of Clinical Cases》 SCIE 2023年第28期6806-6811,共6页
BACKGROUND In this paper,we present a 9-year-old boy who demonstrates a complex interplay between myopia progression,axial length(AL)extension,and retinal nerve fiber layer(RNFL)thickness loss in both eyes.Additionall... BACKGROUND In this paper,we present a 9-year-old boy who demonstrates a complex interplay between myopia progression,axial length(AL)extension,and retinal nerve fiber layer(RNFL)thickness loss in both eyes.Additionally,concurrent optic neuritis has directly impacted RNFL thickness in his right eye,and its potential indirect influence on RNFL and macular ganglion cell layer(mGCL)thickness in his left eye is also noteworthy.CASE SUMMARY A 9-year-old boy with bilateral myopia presented with diminished vision and pain in his right eye due to optic neuritis,while his left eye showed pseudopapilledema.Steroid therapy improved his vision in the right eye,and 16-mo follow-up revealed recovery without recurrence despite myopia progression.Follow-up optical coherence tomography conducted 16 mo later revealed a notable thinning of the RNFL in both eyes,especially along with a reduction in mGCL thickness in the left eye.This intricate interaction between optic neuritis,myopia,and retinal changes underscores the need for comprehensive management,highlighting potential long-term visual implications in young patients.CONCLUSION The progression of myopia and AL extension led to the loss of RNFL thickness in both eyes in a 9-year-old boy.Concurrently,optic neuritis directly affected RNFL thickness in his right eye and may indirectly play a role in the thickness of RNFL and mGCL in his left eye. 展开更多
关键词 Retinal nerve fiber layer MYOPIA optic neuritis Macular ganglion cell Case report
下载PDF
Ultrastructural changes in the optic nerve and capillary vessels during early stages of optic nerve injury 被引量:3
19
作者 Xuehong Ju Xiuyun Li Xiaoshuang Li Hongtao Tang Hongguo Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第9期995-999,共5页
BACKGROUND: Capillaries are the only blood supply for optic nerves, which makes the system more vulnerable to impaired blood circulation. OBJECTIVE: To observe the ultrastructural changes in the optic nerves and cap... BACKGROUND: Capillaries are the only blood supply for optic nerves, which makes the system more vulnerable to impaired blood circulation. OBJECTIVE: To observe the ultrastructural changes in the optic nerves and capillaries in rabbits following intracanalicular segment injury to the optic nerve. DESIGN, TIME AND SETTING: Comparative, observational, pathological morphology was performed at the Department of Anatomy, Weifang Medical College from September to November 2007. MATERIALS: Models of intracanalicular segment injury to the optic nerve were induced in the right eye of thirty healthy, adult rabbits by a free-falling metal cylinder. The H-7500 transmission electron microscope was provided by Hitachi, Japan. METHODS: All rabbits were randomly assigned into experimental (n = 25) and control (n = 5) groups. Optic nerve specimens were obtained from the experimental group at 0.5, 6, 12, 48, and 96 hours, respectively, following injury. Ultrastructural changes to the optic nerves and their capillaries were observed by electron microscopy. Optic nerve injury was not established in the control group, but optic nerve specimens were collected similarly to the experimental group. MAIN OUTCOME MEASURES: Ultrastructural changes in the injured optic nerves and their capillaries. RESULTS: Thirty rabbits were included in the final analysis. In the control group, cross-sections of the optic nerves exhibited varied thicknesses with regularly arranged fibers. The axons appeared to be smooth with condensed myelin sheaths and oval mitochondria. The microtubules and microfilaments were clearly seen. The lumens of the capillaries were regular with densely arranged endothelial cells and visible mitochondria. In the experimental group, 30 minutes after injury to the optic nerves, swollen axons, sparse myelin sheath, disordered microtubules and microfilaments, swollen mitochondria, and a decreased number of pinocytosis vesicles and microfilaments in endothelial cells of the capillaries were observed. At 6 hours, medullary and vacuolar degeneration in the mitochondria, and swollen endothelial cells in the capillary, were visible. At 12 hours, these changes were more obvious. At 48 hours, granular dissolution of microtubules, microfilaments, and mitochondria, as well as diffuse degeneration of mitochondria in the endothelial cells, were observed. At 96 hours, axonal disintegration, vacuolar degeneration, and dilated capillaries were observed. CONCLUSION: During early stages, the injured intracanalicular optic nerve exhibited swollen axons with vacuolar degeneration, swollen and degenerated mitochondria, decreased number of microtubules and microfilaments, and dilated capillaries with increased permeability. 展开更多
关键词 CAPILLARY INJURY optic nerve ultrastructure
下载PDF
The mechanism of Chuanxiong Rhizoma on glaucomatous optic nerve injury based on network pharmacology and molecular docking
20
作者 An-Qi Yuan Bing-Yu Wang +1 位作者 Lin-Jing Peng Hong-Yan Du 《TMR Modern Herbal Medicine》 2023年第2期18-30,共13页
Based on network pharmacology,this study predicted the potential molecular mechanism and related pathways of the protective effect of traditional Chuanxiong Rhizoma,a traditional Chinese herb,on glaucomatous optic ner... Based on network pharmacology,this study predicted the potential molecular mechanism and related pathways of the protective effect of traditional Chuanxiong Rhizoma,a traditional Chinese herb,on glaucomatous optic nerve injury,and conducted in vitro experimental verification of the predicted results of network analysis.We analyzed the molecular mechanism of Chuanxiong Rhizoma in the potential treatment of glaucoma by revealing its main active ingredients and predicting its targets,so as to provide reference for subsequent basic research.Network pharmacological research results showed that the potential hub targets and key signaling pathways of Chuanxiong Rhizoma in the treatment of glaucoma were closely related to biological processes such as apoptosis,autophagy,inflammation,oxidative stress and angiogenesis.Molecular docking showed that many active ingredients,such as chrysophanol(CHR),myricanone and retinol,could combine well with their target proteins by intermolecular forces,especially CHR had strong binding ability with each target.We speculated that the main active component of Chuanxiong Rhizoma might be involved in the regulation of PI3K-Akt,Nod-like receptor,IL-4 and IL-13,MAPK,AGE-RAGE and neurotrophin signaling pathway by regulating of PI3K,Akt,TLR4,RAGE,NTRK2 and other key targets.Furthermore,it may achieve multi-directional intervention on apoptosis/autophagy,inflammation/immunity,oxidative stress and nutrient metabolism of axoplasma flow,and then delay the degeneration of optic nerve injury.In vitro experiments showed that the active component CHR of Chuanxiong Rhizoma could reverse the M1-type polarization and autophagy/apoptosis of mouse microglia(BV2)induced by lipopolysaccharide(LPS)at the transcriptional level.Meanwhile,the expression of inflammatory mediators IL-1βand TNF-αwas inhibited,and the mRNA level of anti-inflammatory factor IL-10 was significantly increased.In addition,CHR down-regulates activation of the RAGE-NOX4 pathway mediated by LPS in reducing oxidative stress.In this study,network pharmacology and molecular docking technology were integrated for the first time to explore the potential molecular mechanism of traditional Chinese herb“Chuanxiong Rhizoma”in the treatment on glaucoma,and CHR was innovatively proposed as an important ingredient in Chuanxiong Rhizoma that plays a protective role in the damage of optic nerve.Preliminary verification was conducted through in vitro experiments.The results suggest that Chuanxiong Rhizoma may interfere with autophagy and apoptosis,inhibit immune inflammation,as well as reduce oxidative stress in the treatment of glaucoma through the active components represented by CHR,so as to resist progressive optic nerve injury.Our study provides theoretical basis for the clinical use of Chinese herbal medicine or its extract in glaucoma,and also lays a solid foundation for the research of Chinese medicine in the field of optic nerve protection. 展开更多
关键词 Chuanxiong Rhizoma GLAUCOMA optic nerve damage network pharmacology molecular docking CHRYSOPHANOL
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部