Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p...The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.展开更多
The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibil...The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.展开更多
In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic senso...In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
The paper made a research on the fiber Bragg grating sensor demodulation system, which was based on virtual instrument labview and it developed a friendly upper monitor software. Based on the LM algorithm, the softwar...The paper made a research on the fiber Bragg grating sensor demodulation system, which was based on virtual instrument labview and it developed a friendly upper monitor software. Based on the LM algorithm, the software realized rapid and accurate spectral data fitting, improving dynamic characteristics and measuring precision of the system. Depending on different fiber Bragg grating sensors, it can realize flexible calibration. It has the functions of collection, display and data storage, which can flexibly design alarm threshold according to the practical application. The fiber Bragg grating sensors can be identified by the software so that the distributed network, with large capacity optical fiber sensing, can be achieved.展开更多
Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal t...Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.展开更多
Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fi...Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fiber composite XLPE (cross-linked polyethylene) 2,500 mm2 cable system. This system has been installed in Cheongna district of Incheon city. KEPCO and LS Cable are also planning to build the cooling system in a tunnel in order to reduce the ambient temperature caused by currents. In this paper, the process of development, field installation, and final inspection test of the complete system will be described.展开更多
In underground mines, high air temperatures in the summer months lead to an increase in inlet airflow temperatures. This leads to seasonal thermal pollution in the mines. This paper examines the dynamics and effects o...In underground mines, high air temperatures in the summer months lead to an increase in inlet airflow temperatures. This leads to seasonal thermal pollution in the mines. This paper examines the dynamics and effects of seasonal variation in surface air temperatures and surrounding rock temperatures in deep coal mines. It also examines temperature variations in the main ventilation circuit, working face, and surrounding rock. The study results revealed that airflow temperatures were significantly affected by seasonal air temperature variations. The greater the distance was between the inlet and the wellhead of the ventilation shaft, the less the effect was on temperature. Moreover, slight temperature variations (1.0-3.0 ℃) were observed between various points on the return route during the summer months. Airflow temperatures along the airflow inlet to the return route of the working face first decreased, but then increased. The temperature field of the surrounding rock increased gradually with increased distance between the mine roadway and inlet, with recorded rock temperatures as high as 40.53 ℃. The radius of the heat-adjusting layer was between 28 and 33 m.展开更多
This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spe...This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.展开更多
In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring...In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.展开更多
A novel method to measure the temperature on the surface of micro-hotplate was presented. The tiny fiber probe and the optical power meter were employed to measure the sample radialization power. By means of comparing...A novel method to measure the temperature on the surface of micro-hotplate was presented. The tiny fiber probe and the optical power meter were employed to measure the sample radialization power. By means of comparing the relationship between the radialization power and the temperature, sample surface temperature can be discerned accurately. Such an approach has provided more accuracy than traditional temperature measurements. The experimental result based on this method is quite similar to that of simulation by the finite element analysis (FEA) software of Ansys in theory. This measurement is very useful for measuring temperature for these micro samples prone to be untouchable.展开更多
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金jointly supported by the Science and Technology Program of Guangzhou (202103040003)the offshore NGHs production test projects under the Marine Geological Survey Program initiated by the China Geological Survey (DD20190226, DD20190218 and DD20221706)+2 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 045)the financial support from China Geological Survey (DD20221703)the National Natural Science Foundation of China (NSFC) (6210030553)。
文摘The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.
基金supported by the National Natural Science Foundation of China under Grant No. 60608009Science Foundation of Zhejiang Province under Grant No. Y107091 and ScienceTechnology Department of Zhejiang Province under Grant No. 2008C21172.
文摘The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.
基金the financial support provided by the National Basic Research Program of China (973 Program) (Grant No. 2011CB710605)the National Natural Science Foundation of China (Grant Nos. 41102174, 41302217)supported by the National Key Technology R&D Program of China (Grant No. 2012BAK10B05)
文摘In the discipline of geotechnical engineering, fiber optic sensor based distributed monitoring has played an increasingly important role over the past few decades. Compared with conventional sensors, fiber optic sensors have a variety of exclusive advantages, such as smaller size, higher precision, and better corrosion resistance. These innovative monitoring technologies have been successfully applied for performance monitoring of geo-structures and early warning of potential geo- hazards around the world. In order to investigate their ability to monitor slope stability problems, a medium-sized model of soil nailed slope has been constructed in laboratory. The fully distributed Brillouin optical time-domain analysis (BOTDA) sensing technology was employed to measure the horizontal strain distributions inside the model slope. During model construction, a specially designed strain sensing fiber was buried in the soil mass. Afterward, the surcharge loading was applied on the slope crest in stages using hydraulic jacks and a reaction frame. During testing, an NBX-6o5o BOTDA sensing interrogator was used to collect the fiber optic sensing data. The test results have been analyzed in detail, which shows that the fiber optic sensors can capture the progressive deformation and failure pattern of the model slope. The limit equilibrium analyses were also conducted to obtain the factors ofsafety of the slope under different surface loadings. It is found that the characteristic maximum strains can reflect the stability of the model slope and an empirical relationship was obtained, This study verified the effectiveness of the distributed BOTDA sensing technology in performance monitoring of slope.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
文摘The paper made a research on the fiber Bragg grating sensor demodulation system, which was based on virtual instrument labview and it developed a friendly upper monitor software. Based on the LM algorithm, the software realized rapid and accurate spectral data fitting, improving dynamic characteristics and measuring precision of the system. Depending on different fiber Bragg grating sensors, it can realize flexible calibration. It has the functions of collection, display and data storage, which can flexibly design alarm threshold according to the practical application. The fiber Bragg grating sensors can be identified by the software so that the distributed network, with large capacity optical fiber sensing, can be achieved.
基金Supported by the National Natural Science Foundation of China (50375026,50375028)
文摘Based on advantages of technology of distributive fiber-optic temperature sensing and specific to its applications in monitoring mine conflagration, the corresponding Processes such as connection arrangement, signal transmission and monitoring were illustrated. As applied in Sitai Coal Mine of Datong Coal Mine Group Co., this method is effective and accurate and could provide reliable gist for monitoring spontaneous combustion in gob area of mines.
文摘Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fiber composite XLPE (cross-linked polyethylene) 2,500 mm2 cable system. This system has been installed in Cheongna district of Incheon city. KEPCO and LS Cable are also planning to build the cooling system in a tunnel in order to reduce the ambient temperature caused by currents. In this paper, the process of development, field installation, and final inspection test of the complete system will be described.
基金This work was supported by the National Natural Science Foundation of China (Nos. 5157-4139 and 5180-4247)De Montfort University through its distinguished Vice-Chancellor 2020 ProgrammeUK Science and Technology Facilities Council (STFC) through Batteries Early Career Researcher Award.
文摘In underground mines, high air temperatures in the summer months lead to an increase in inlet airflow temperatures. This leads to seasonal thermal pollution in the mines. This paper examines the dynamics and effects of seasonal variation in surface air temperatures and surrounding rock temperatures in deep coal mines. It also examines temperature variations in the main ventilation circuit, working face, and surrounding rock. The study results revealed that airflow temperatures were significantly affected by seasonal air temperature variations. The greater the distance was between the inlet and the wellhead of the ventilation shaft, the less the effect was on temperature. Moreover, slight temperature variations (1.0-3.0 ℃) were observed between various points on the return route during the summer months. Airflow temperatures along the airflow inlet to the return route of the working face first decreased, but then increased. The temperature field of the surrounding rock increased gradually with increased distance between the mine roadway and inlet, with recorded rock temperatures as high as 40.53 ℃. The radius of the heat-adjusting layer was between 28 and 33 m.
文摘This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.
基金supported by the National Natural Science Foundation of China(Nos.42171128,41971076)the National Key Research and Development Program of China(No.2018YFC1505306)the Key Research and Development Program of Heilongjiang Province(No.GA21A501).
文摘In cold regions,the widened subgrade could produce uneven frost heave that is detrimental to the pavement.This study investigates the differential frost heave characteristics in a widened subgrade.The field monitoring system mainly consists of temperature,moisture,and displacement sensors and distributed optical fiber cables for strain measurement.The monitoring results show that the cooling period in the subgrade is longer than the warming period.Water content in the subgrade changes significantly within 0−2 m below the subgrade surface but stabilizes within 2−5 m.The maximum frost heave occurs from February to March.In comparison,the existing subgrade has a longer freezing period and larger heave value,caused by the higher density and water content inside.Water in the existing subgrade migrates into the new one after widening,leading to frost heave reduction in the existing subgrade.Simultaneously,the traffic loads result in the consolidation of the new subgrade,thus reducing the heave value in the second year.In the third year,the water supply from the existing subgrade facilitates the frost heave in the new subgrade.The tensile strain distributions obtained by the distributed optical fiber cables show that the maximum differential frost heave occurs at the joint between the existing and new subgrades.The differential frost heave gradually stabilizes after three years.Finally,an improved frost heave prediction model is developed based on the segregation potential concept and monitoring results.
基金Project (60104006) supported by the National Natural Science Foundation of China Project(20030322) supported by the Science Technology Office of Jilin Province
文摘A novel method to measure the temperature on the surface of micro-hotplate was presented. The tiny fiber probe and the optical power meter were employed to measure the sample radialization power. By means of comparing the relationship between the radialization power and the temperature, sample surface temperature can be discerned accurately. Such an approach has provided more accuracy than traditional temperature measurements. The experimental result based on this method is quite similar to that of simulation by the finite element analysis (FEA) software of Ansys in theory. This measurement is very useful for measuring temperature for these micro samples prone to be untouchable.