The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) wa...AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) was mixed with Type I collagen at 10% (weight/volume). The final solution was molded to the shape of a corneal contact lens. The collagen concentrations of 10%, 12.5%, 15%, 17.5% and 20% artificial corneas were tested by UV/vis-spectroscopy for their transparency compared with normal rat cornea. 10-0 sutures were knotted on the edges of substitute to measure the corneal buttons's mechanical properties. Normal rat corneal tissue primary culture on the collagen scaffold was observed in 4 weeks. Histopathologic examinations were performed after 4 weeks of in vitro culturing. RESULTS: The collagen scaffold appearance was similar to that of soft contact lens. With the increase of collagen concentration, the transparency of artificial corneal buttons was diminished, but the toughness of the scaffold was enhanced. The scaffold transparency in the 10% concentration collagen group resembled normal rat cornea. To knot and embed the scaffold under the microscope, 20% concentration collagen group was more effective during implantation than lower concentrations of collagen group. In the first 3 weeks, corneal cell proliferation was highly active. The shapes of cells that grew on the substitute had no significant difference when compared with the cells before they were moved to the scaffold. However, on the fortieth day, most cells detached from the scaffold and died. Histopathologic examination of the primary culture scaffold revealed well grown corneal cells tightly attached to the scaffold in the former culturing. CONCLUSION: Collagen scaffold can be molded to the shape of soft contact corneal lens with NHS/EDC. The biological stability and biocompatibility of collagen from animal species may be used as material in preparing to engineer artificial corneal scaffold.展开更多
A key question of the backward integration algorithm to lidar equation is how to determine the far-endboundary value. This paper develops a Constraint Inversion Algorithm (CIA) for deriving the value andthen the aeros...A key question of the backward integration algorithm to lidar equation is how to determine the far-endboundary value. This paper develops a Constraint Inversion Algorithm (CIA) for deriving the value andthen the aerosol extinction profile from lidar signals, which uses the ground-level horizontal lidar signals asthe constraint information. The smaller the wavelength is, the more sensitive to the variation of aerosol extinction to backscatter ratio solved by CIA. According to the property an algorithm is further proposed tosimultaneously retrieve the aerosol extinction profile, the size distribution and the imaginary part of its reflective index from the multi-wavelength lidar observations. CIA is tested in the inversion simulations withsatisfactory result.展开更多
SnO2 hollow microspheres were fabricated via a hydrothermal synthesis method assisting by the complex surfactant system of polyacrylamide and polyethylene glycol.Observation by field emission scanning electron microsc...SnO2 hollow microspheres were fabricated via a hydrothermal synthesis method assisting by the complex surfactant system of polyacrylamide and polyethylene glycol.Observation by field emission scanning electron microscopy (FESEM) showed the SnO2 hollow spheres were composed of nanoparticles.The growth mechanism for the formation of hollow spheres was proposed.UV spectroscopy and photoluminescence (PL) were used to investigate the optical properties of the products.The PL result showed that four peaks,containing the emission from recombination of free excitons,were observed in the photoluminescence spectrum.展开更多
Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at ...Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at the fourth-order Moller-Plesset approximation (MP4) have recovered more than 90% of the experimental values βo , comparecl to that as low as 75% by the other authors. The calculated values of αo and iuo are also in good agreement with those of experiments and superior to that from other work. It is shown that the bond functions improve the calculated results at SCF level and especially at the level of the correction of electronic correlation (MP2 and MP4).展开更多
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of...Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.展开更多
Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morpholo...Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morphologies ZnO nanostructures namely nanowires, well-alignednanorods, nanofeathers and hexagonal nano-rods were formed and all of wurtzite structural crystals.The results indicated that the temperature and substrate play an important role in the formation ofdifferent morphologies of ZnO nanostructures. The photoluminescence (PL) measurement was carried outfor the well-aligned nanorods ZnO sample and blue emission peaks at 420 and 444 nm have beenobserved at room temperature. And the blue emission mechanism is discussed.展开更多
A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the poly...A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the polymer can be easily solved in polar solvents and be processed into films. The chemical structures of the intermediates and POPNBE were characterized by FTIR, 1H NMR, and UV-Vis-NIR spectrometries. The absorption band in the range of 400-600 nm in the UV-Vis-NIR spectrum is due to the π-π * band gap transition. The optical band gap of POPNBE obtained from the optical absorption is about 1.72 eV. The resonant third-order nonlinear optical property of POPNBE at 532 nm was studied by using the degenerate four-wave mixing(DFWM) technique. The resonant third-order nonlinear optical susceptibility of POPNBE is about 3.42×10 -8 esu.展开更多
CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before...CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν) 2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dE- ex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.展开更多
Forty para-disubstituted benzylidene-aniline derivatives were synthesized,and their second harmonic generation(SHG)efficiency was measured by the Kurtz powder technique.The effect of the electronic property and the po...Forty para-disubstituted benzylidene-aniline derivatives were synthesized,and their second harmonic generation(SHG)efficiency was measured by the Kurtz powder technique.The effect of the electronic property and the position of the substituents on powder SHG efficiency was studied.展开更多
The chiral sulfide Y4InSbS9 has been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. It crystallizes in the chiral tetragonal space group P43212 with a = 9.8784(3), c = 27.3106(16) A, ...The chiral sulfide Y4InSbS9 has been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. It crystallizes in the chiral tetragonal space group P43212 with a = 9.8784(3), c = 27.3106(16) A, V = 2665.04(19) A^3, Z = 8, Mr = 880.75, Dc = 4.390 g/cm^3, μ = 22.285 mm^–1, F(000) = 3200, the final R = 0.0302 and wR = 0.0669 for 2961 observed reflections with I 〉 2σ(I). The structure features infinite helical chains of [In2Sb2S(11)^10–]∞ propagating along the c direction and they are separated by isolated Y^3+ cations and S2– anions. UV/Vis diffuse reflectance spectroscopy study shows that its optical gap is around 1.94 eV. Density functional theory(DFT) study indicates an indirect band gap with an electronic transfer excitation of S 3p to Y 5d orbital electrons.展开更多
A novel Schiff base ligand (HL) derived from S-methyldithiocabazate and pmethoxylbenzaldehyde was prepared and characterized. The Schiff base ligand acts as a single negatively charged bidentate ligand fondng D-M-D ty...A novel Schiff base ligand (HL) derived from S-methyldithiocabazate and pmethoxylbenzaldehyde was prepared and characterized. The Schiff base ligand acts as a single negatively charged bidentate ligand fondng D-M-D type comPlex (D=donor, M=metal). Single crystal X-ray diffraction analysis of the copper(Ⅱ) complex established that the geometry around Cu (Ⅱ) is square-planar with two equivalent M-N and M-S bonds. The two phenyl rings and the coordinated plane are almost in one plane fotheng an electronic delocalization system. Their thirdorder response was also studied.展开更多
The phase diagram, growth and optical property of LaBWO6 crystal are reported. LaBWO6 crystal melts congruently at 1078 ℃. Based on the pseudo-ternary phase diagram of LaBWO6-(Li2WO4/LiF) -B203, the LaBWO6 crystals...The phase diagram, growth and optical property of LaBWO6 crystal are reported. LaBWO6 crystal melts congruently at 1078 ℃. Based on the pseudo-ternary phase diagram of LaBWO6-(Li2WO4/LiF) -B203, the LaBWO6 crystals have been firstly grown by the flux method. LaBWO6 crystal crystallizes in the orthorhombic system, space group P222 with a = 4.1, b = 10.31 and c = 21.71 A. LaBWO6 Crystal exhibits high transparency in a range from 327 to 1100 nm. The absorption edge of the crystal in the UV range is at 293 nm. The SHG efficient of LaBWO6 crystal is 0.3 times as large as that of the KDP crystal.展开更多
The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composit...The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composite ceramics were studied. The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition. The lightness increased obviously but the chroma change was small. Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance, while the transmittance and the lightness of slight addition changed significantly. The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nan...GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.展开更多
Amorphous oxides have unique physicochemical properties with extensive opto-electronic applications such as the thin-film transistor,light-emitting diode backplanes,and supercontinuum generation.In this contribution,w...Amorphous oxides have unique physicochemical properties with extensive opto-electronic applications such as the thin-film transistor,light-emitting diode backplanes,and supercontinuum generation.In this contribution,we synthesize the amorphous ZrO_(2)/SiO_(2) nanoporous aerogel with high structural integrity.With the femtosecond excitation laser at 800–1,064 nm,the broadband second harmonic generation is observed.The nonlinear optical properties of the as-prepared ZrO_(2)/SiO_(2) aerogel are investigated at 1.0μm and 1.5μm for the first time.Subsequently,the amorphous ZrO_(2)/SiO_(2) saturable absorber is originally applied in the Yb-doped and Er-doped fiber lasers to realize the mode-locking operations.In the Yb-doped fiber laser,the dissipative soliton resonance mode-locking operation is demonstrated with the largest pulse duration of 22 ns at a repetition rate of 7.8 MHz and a high signal-to-noise ratio of 64 dB.In the Er-doped fiber laser,a conventional soliton mod-locking regime is observed with an ultrashort pulse width of 960 fs,a repetition frequency of 6.55 MHz,and a time-bandwidth production of 0.347.Our work shows the good ability of the ZrO_(2)/SiO_(2) aerogel in generating ultrafast pulses and extends the saturable absorber into the amorphous material realm.展开更多
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef...Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.展开更多
Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u...Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.展开更多
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.
基金Scientific and Technological Research Projects of Educational Committee of Liaoning Province of China(No.2008S243)
文摘AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) was mixed with Type I collagen at 10% (weight/volume). The final solution was molded to the shape of a corneal contact lens. The collagen concentrations of 10%, 12.5%, 15%, 17.5% and 20% artificial corneas were tested by UV/vis-spectroscopy for their transparency compared with normal rat cornea. 10-0 sutures were knotted on the edges of substitute to measure the corneal buttons's mechanical properties. Normal rat corneal tissue primary culture on the collagen scaffold was observed in 4 weeks. Histopathologic examinations were performed after 4 weeks of in vitro culturing. RESULTS: The collagen scaffold appearance was similar to that of soft contact lens. With the increase of collagen concentration, the transparency of artificial corneal buttons was diminished, but the toughness of the scaffold was enhanced. The scaffold transparency in the 10% concentration collagen group resembled normal rat cornea. To knot and embed the scaffold under the microscope, 20% concentration collagen group was more effective during implantation than lower concentrations of collagen group. In the first 3 weeks, corneal cell proliferation was highly active. The shapes of cells that grew on the substitute had no significant difference when compared with the cells before they were moved to the scaffold. However, on the fortieth day, most cells detached from the scaffold and died. Histopathologic examination of the primary culture scaffold revealed well grown corneal cells tightly attached to the scaffold in the former culturing. CONCLUSION: Collagen scaffold can be molded to the shape of soft contact corneal lens with NHS/EDC. The biological stability and biocompatibility of collagen from animal species may be used as material in preparing to engineer artificial corneal scaffold.
文摘A key question of the backward integration algorithm to lidar equation is how to determine the far-endboundary value. This paper develops a Constraint Inversion Algorithm (CIA) for deriving the value andthen the aerosol extinction profile from lidar signals, which uses the ground-level horizontal lidar signals asthe constraint information. The smaller the wavelength is, the more sensitive to the variation of aerosol extinction to backscatter ratio solved by CIA. According to the property an algorithm is further proposed tosimultaneously retrieve the aerosol extinction profile, the size distribution and the imaginary part of its reflective index from the multi-wavelength lidar observations. CIA is tested in the inversion simulations withsatisfactory result.
基金Funded by the Basic Research Program of Henan Province of China (No.102300410172)the Natural Science Program of Luoyang Institute of Science and Technology (No. 2009YZ04)+1 种基金the Program for Innovation Team of the Ministry of Education of China (PCSIRT0644)the National Natural Science Foundation of China (A3 Foresight Project No. 50821140308)
文摘SnO2 hollow microspheres were fabricated via a hydrothermal synthesis method assisting by the complex surfactant system of polyacrylamide and polyethylene glycol.Observation by field emission scanning electron microscopy (FESEM) showed the SnO2 hollow spheres were composed of nanoparticles.The growth mechanism for the formation of hollow spheres was proposed.UV spectroscopy and photoluminescence (PL) were used to investigate the optical properties of the products.The PL result showed that four peaks,containing the emission from recombination of free excitons,were observed in the photoluminescence spectrum.
文摘Dond function basis sets have been used to calculate the molecular nonlinear optical properties which include hyperpolarizability βo , polarizability ao , and dipole moment μo for six molecules. The calculations at the fourth-order Moller-Plesset approximation (MP4) have recovered more than 90% of the experimental values βo , comparecl to that as low as 75% by the other authors. The calculated values of αo and iuo are also in good agreement with those of experiments and superior to that from other work. It is shown that the bond functions improve the calculated results at SCF level and especially at the level of the correction of electronic correlation (MP2 and MP4).
文摘Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 10<sup>7</sup> atomic units (10<sup><span style="color:#4F4F4F;font-family:-apple-system, " font-size:14px;white-space:normal;background-color:#ffffff;"="">-</span>33</sup> esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH<sub>3</sub>)<sub>2</sub> or -NHCH<sub>3</sub>) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
文摘Nanostructural zinc oxide films have been synthesized via vapor phase growthby heating pure zinc powder. Scanning electron microscopy ( SEM) images and X-ray diffraction (XRD)results showed that four kinds of morphologies ZnO nanostructures namely nanowires, well-alignednanorods, nanofeathers and hexagonal nano-rods were formed and all of wurtzite structural crystals.The results indicated that the temperature and substrate play an important role in the formation ofdifferent morphologies of ZnO nanostructures. The photoluminescence (PL) measurement was carried outfor the well-aligned nanorods ZnO sample and blue emission peaks at 420 and 444 nm have beenobserved at room temperature. And the blue emission mechanism is discussed.
文摘A novel soluble π-conjugated polymer, poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] (POPNBE), was synthesized by a five-step reaction. As a result of introducing a long acyl to pyrrole at 3-position, the polymer can be easily solved in polar solvents and be processed into films. The chemical structures of the intermediates and POPNBE were characterized by FTIR, 1H NMR, and UV-Vis-NIR spectrometries. The absorption band in the range of 400-600 nm in the UV-Vis-NIR spectrum is due to the π-π * band gap transition. The optical band gap of POPNBE obtained from the optical absorption is about 1.72 eV. The resonant third-order nonlinear optical property of POPNBE at 532 nm was studied by using the degenerate four-wave mixing(DFWM) technique. The resonant third-order nonlinear optical susceptibility of POPNBE is about 3.42×10 -8 esu.
文摘CdS films were prepared with chemical pyrolysis deposition (CPD) at 450℃ during film growth, and these CdS films were also annealed at different temperature from 200-500℃.The optical property of the CdS films before and after annealing was investigated at different measuring temperature from 10K to 300K. Optical absorption spectra show that the absorption edge is towards the shorter wavelengths, and the energy band gaps deduced from the plots of (α·hν) 2 vs. hν are increased when the measuring temperature is decreased. The optical behaviors of the CdS films annealed at a certain temperature seem to have the similar tendency at different measuring temperature. Based on dE- ex/dT curve dependent on annealing temperature, some phenomena related microstructure in CdS films could be found.
文摘Forty para-disubstituted benzylidene-aniline derivatives were synthesized,and their second harmonic generation(SHG)efficiency was measured by the Kurtz powder technique.The effect of the electronic property and the position of the substituents on powder SHG efficiency was studied.
基金Supported by the National Natural Science Foundation of China(Nos.21201185 and 21661037)the Natural Science Foundation of Chongqing(Nos.cstc2013jcyjA50033 and cstc2015jcyjA0317)+2 种基金the Natural Science Foundation of Guizhou Province(Nos.JLKZS[2014]13 and[2014]42)the Project Foundation of Chongqing University of Education(No.16xjpt08)the Natural Science Foundation of State Key Laboratory of Structural Chemistry(No.20140004)
文摘The chiral sulfide Y4InSbS9 has been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. It crystallizes in the chiral tetragonal space group P43212 with a = 9.8784(3), c = 27.3106(16) A, V = 2665.04(19) A^3, Z = 8, Mr = 880.75, Dc = 4.390 g/cm^3, μ = 22.285 mm^–1, F(000) = 3200, the final R = 0.0302 and wR = 0.0669 for 2961 observed reflections with I 〉 2σ(I). The structure features infinite helical chains of [In2Sb2S(11)^10–]∞ propagating along the c direction and they are separated by isolated Y^3+ cations and S2– anions. UV/Vis diffuse reflectance spectroscopy study shows that its optical gap is around 1.94 eV. Density functional theory(DFT) study indicates an indirect band gap with an electronic transfer excitation of S 3p to Y 5d orbital electrons.
文摘A novel Schiff base ligand (HL) derived from S-methyldithiocabazate and pmethoxylbenzaldehyde was prepared and characterized. The Schiff base ligand acts as a single negatively charged bidentate ligand fondng D-M-D type comPlex (D=donor, M=metal). Single crystal X-ray diffraction analysis of the copper(Ⅱ) complex established that the geometry around Cu (Ⅱ) is square-planar with two equivalent M-N and M-S bonds. The two phenyl rings and the coordinated plane are almost in one plane fotheng an electronic delocalization system. Their thirdorder response was also studied.
基金Supported by the NNSFC (No.61275177)the NSF of Fujian Province (No.2012I0011)
文摘The phase diagram, growth and optical property of LaBWO6 crystal are reported. LaBWO6 crystal melts congruently at 1078 ℃. Based on the pseudo-ternary phase diagram of LaBWO6-(Li2WO4/LiF) -B203, the LaBWO6 crystals have been firstly grown by the flux method. LaBWO6 crystal crystallizes in the orthorhombic system, space group P222 with a = 4.1, b = 10.31 and c = 21.71 A. LaBWO6 Crystal exhibits high transparency in a range from 327 to 1100 nm. The absorption edge of the crystal in the UV range is at 293 nm. The SHG efficient of LaBWO6 crystal is 0.3 times as large as that of the KDP crystal.
基金Funded by the National High-Tech Research and Development Program of China (863 Program) (No. 2006AA03Z440)
文摘The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated. The relative sintered densities, transmittances, color and the microstructure of the composite ceramics were studied. The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition. The lightness increased obviously but the chroma change was small. Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance, while the transmittance and the lightness of slight addition changed significantly. The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
文摘GaAs-based nanomaterials are essential for near-infrared nano-photoelectronic devices due to their exceptional optoelectronic properties.However,as the dimensions of GaAs materials decrease,the development of GaAs nanowires(NWs)is hindered by type-Ⅱquantum well structures arising from the mixture of zinc blende(ZB)and wurtzite(WZ)phases and surface defects due to the large surface-to-volume ratio.Achieving GaAs-based NWs with high emission efficiency has become a key research focus.In this study,pre-etched silicon substrates were combined with GaAs/AlGaAs core-shell heterostructure to achieve GaAs-based NWs with good perpendicularity,excellent crystal structures,and high emission efficiency by leveraging the shadowing effect and surface passivation.The primary evidence for this includes the prominent free-exciton emission in the variable-temperature spectra and the low thermal activation energy indicated by the variable-power spectra.The findings of this study suggest that the growth method described herein can be employed to enhance the crystal structure and optical properties of otherⅢ-Ⅴlow-dimensional materials,potentially paving the way for future NW devices.
基金The National Natural Science Foundation of China(12004213,12274263,12174223,52072351,62175128).
文摘Amorphous oxides have unique physicochemical properties with extensive opto-electronic applications such as the thin-film transistor,light-emitting diode backplanes,and supercontinuum generation.In this contribution,we synthesize the amorphous ZrO_(2)/SiO_(2) nanoporous aerogel with high structural integrity.With the femtosecond excitation laser at 800–1,064 nm,the broadband second harmonic generation is observed.The nonlinear optical properties of the as-prepared ZrO_(2)/SiO_(2) aerogel are investigated at 1.0μm and 1.5μm for the first time.Subsequently,the amorphous ZrO_(2)/SiO_(2) saturable absorber is originally applied in the Yb-doped and Er-doped fiber lasers to realize the mode-locking operations.In the Yb-doped fiber laser,the dissipative soliton resonance mode-locking operation is demonstrated with the largest pulse duration of 22 ns at a repetition rate of 7.8 MHz and a high signal-to-noise ratio of 64 dB.In the Er-doped fiber laser,a conventional soliton mod-locking regime is observed with an ultrashort pulse width of 960 fs,a repetition frequency of 6.55 MHz,and a time-bandwidth production of 0.347.Our work shows the good ability of the ZrO_(2)/SiO_(2) aerogel in generating ultrafast pulses and extends the saturable absorber into the amorphous material realm.
基金Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)the National Natural Science Foundation of China(Grant No.21703222)。
文摘Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.
基金funded by the Institute for Research and Community Service(LPPM)Universitas Negeri Padang,Indonesia,with a Contract Number:1529/UN35.15/LT/2023.
文摘Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.