In this research, different parameters of plastic scintillator detector were investigated by Geant4 simulation toolkit. These parameters consisted of radius, length and position of PMT as well as surface reflective ty...In this research, different parameters of plastic scintillator detector were investigated by Geant4 simulation toolkit. These parameters consisted of radius, length and position of PMT as well as surface reflective type and finish options. Furthermore, response time distributions of two organic plastic materials were studied. The results indicated that collecting optical photons has a linear relationship with PMT radius head. Also, the vertical location of PMT has a non-linear relationship with the optical photons collection. However, the collection decreased by increasing PMT length or moving PMT head horizontal position. The response functions of two plastic scintillator materials were in good agreement with experimental published results. Also, Geant4 radiation transport code can simulate incident radiation photon and predict subsequent events to the PMT head very well. The results indicated that BC-404 has faster scintillation properties versus BC-400 organic scintillator materials. Comparison between Geant4 outputs illustrates that the best reflector material and surface finish type for optical photons is ground TiO2.展开更多
ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical len...ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.展开更多
文摘In this research, different parameters of plastic scintillator detector were investigated by Geant4 simulation toolkit. These parameters consisted of radius, length and position of PMT as well as surface reflective type and finish options. Furthermore, response time distributions of two organic plastic materials were studied. The results indicated that collecting optical photons has a linear relationship with PMT radius head. Also, the vertical location of PMT has a non-linear relationship with the optical photons collection. However, the collection decreased by increasing PMT length or moving PMT head horizontal position. The response functions of two plastic scintillator materials were in good agreement with experimental published results. Also, Geant4 radiation transport code can simulate incident radiation photon and predict subsequent events to the PMT head very well. The results indicated that BC-404 has faster scintillation properties versus BC-400 organic scintillator materials. Comparison between Geant4 outputs illustrates that the best reflector material and surface finish type for optical photons is ground TiO2.
文摘ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.