The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand...The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.展开更多
An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brow...An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or em...Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the per...Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.展开更多
Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement ...Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.展开更多
Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used...A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used azimuthelevation, spinning-elevation tracking formulae etc. are the special cases of it. The possibilities of utilizing the general solution and its significance in solar energy engineering are discussed.展开更多
Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing....Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.展开更多
A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics ...A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.展开更多
Two-dimensional mesh-based motion tracking preserves neighboring relations (through connectivity of the mesh) and also allows warping transformations between pairs of frames;thus, it effectively eliminates blocking ar...Two-dimensional mesh-based motion tracking preserves neighboring relations (through connectivity of the mesh) and also allows warping transformations between pairs of frames;thus, it effectively eliminates blocking artifacts that are common in motion compensation by block matching. However, available uniform 2-D mesh model enforces connec-tivity everywhere within a frame, which is clearly not suitable across occlusion boundaries. To overcome this limitation, BTBC (background to be covered) detection and MF (model failure) detection algorithms are being used. In this algorithm, connectivity of the mesh elements (patches) across covered and uncovered region boundaries are broken. This is achieved by allowing no node points within the background to be covered and refining the mesh structure within the model failure region at each frame. We modify the occlusion-adaptive, content-based mesh design and forward tracking algorithm used by Yucel Altunbasak for selection of points for triangular 2-D mesh design. Then, we propose a new triangulation procedure for mesh structure and also a new algorithm to justify connectivity of mesh structure after motion vector estimation of the mesh points. The modified content-based mesh is adaptive which eliminates the necessity of transmission of all node locations at each frame.展开更多
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,grant number S-1443-0223.
文摘The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.
基金the National NaturalScience Foundation of China (Grant No. 62175135)theSpecial Foundation of Local Scientific and TechnologicalDevelopment Guided by Central Government (GrantNo. YDZJSX20231A006)the Fundamental ResearchProgram of Shanxi Province (Grant No. 202103021224025).
文摘An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
文摘Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.
基金This work was supported by the National Natural Science Foundation of China(61690210,61690213).
文摘Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572201 and 91634202)
文摘Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
文摘A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used azimuthelevation, spinning-elevation tracking formulae etc. are the special cases of it. The possibilities of utilizing the general solution and its significance in solar energy engineering are discussed.
基金supported under Australian Research Council’s Discovery Early Career Researcher Award(DECRA)funding scheme(project number DE150100924)The University of Melbourne’s Early Career Researcher(ECR)funding scheme(project number 602702)the Victoria Fellowship(D2015/35025)
文摘Optical wireless communications have been widely studied during the past decade in short-range applications, such as indoor highspeed wireless networks and interconnects in data centers and high-performance computing. In this paper, recent developments in high-speed short-range optical wireless communications are reviewed, including visible light communications (VLCs), infrared indoor communication systems, and reconfigurable optical interconnects. The general architecture of indoor high-speed optical wireless communications is described, and the advantages and limitations of both visible and infrared based solutions are discussed. The concept of reconfigurable optical interconnects is presented, and key results are summarized. In addition, the challenges and potential future directions of short-range optical wireless communications are discussed.
基金supported by the Central University Basic Research Fund of China(No.3072022CFJ0202)the Central University Basic Research Fund of China(No.3072022CFJ0204)。
文摘A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.
文摘Two-dimensional mesh-based motion tracking preserves neighboring relations (through connectivity of the mesh) and also allows warping transformations between pairs of frames;thus, it effectively eliminates blocking artifacts that are common in motion compensation by block matching. However, available uniform 2-D mesh model enforces connec-tivity everywhere within a frame, which is clearly not suitable across occlusion boundaries. To overcome this limitation, BTBC (background to be covered) detection and MF (model failure) detection algorithms are being used. In this algorithm, connectivity of the mesh elements (patches) across covered and uncovered region boundaries are broken. This is achieved by allowing no node points within the background to be covered and refining the mesh structure within the model failure region at each frame. We modify the occlusion-adaptive, content-based mesh design and forward tracking algorithm used by Yucel Altunbasak for selection of points for triangular 2-D mesh design. Then, we propose a new triangulation procedure for mesh structure and also a new algorithm to justify connectivity of mesh structure after motion vector estimation of the mesh points. The modified content-based mesh is adaptive which eliminates the necessity of transmission of all node locations at each frame.