To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u...Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
AIM:To compare the agreement of anterior chamber depth(ACD)and central vault measurements obtained by anterior segment optical coherence tomography(AS-OCT)and ultrasound biomicroscopy(UBM)of post surgical high ...AIM:To compare the agreement of anterior chamber depth(ACD)and central vault measurements obtained by anterior segment optical coherence tomography(AS-OCT)and ultrasound biomicroscopy(UBM)of post surgical high myopic eyes with posterior chamber phakic intraocular lens(Visian ICL;STAAR Surgical)implantation.·METHODS:Fifty-two phakic eyes of 28 high myopic patients who underwent implantable Collamer lens(ICL)surgery for the correction of high myopia were studied.The postoperative ACD,the distance between the corneal endothelium and the anterior surface of ICL(cornea-ICL)and the central vault were measured with the AS-OCT system and the UBM system.Intraclass correlation coefficient(ICC)and the Bland-Altman plot were used to evaluate the repeatability and agreement of two devices.·R ESULTS:The mean ACD,cornea-ICL and central vault in the 52 phakic eyes after ICL surgery was 3.19±0.28 mm,2.47±0.28 mm,0.50±0.19 mm by AS-OCT and3.13±0.25 mm,2.49±0.25 mm,0.44±0.19 mm by UBM,respectively.Pairwise comparison of ACD and central vault measurements showed significant differences between AS-OCT and UBM(〈0.05).However,no statistically significant difference was found between these imaging techniques in cornea-ICL(〉0.05).The Pearson correlation coefficient()between AS-OCT and UBM measurements for ACD,cornea-ICL and vault was0.88,0.80 and 0.89,respectively(〈0.001).The ICC was0.89-0.94 for the measurements of AS-OCT and UBM.Bland-Altman analysis showed the 95%limits of agreement of ACD,cornea-ICL,central vault measurements between these two devices were-0.20 to 0.32 mm,-0.36to 0.32 mm and-0.12 to 0.24 mm,respectively.58·CONCLUSION:Central ACD and vault measurements using AS-OCT demonstrated a slight significantly higher value than using UBM in phakic eyes after ICL surgery.These two devices should not be used interchangeably for measurements of central ACD and vault in patients after phakic intraocular lens implantation.展开更多
Objective:Novel optical imaging modalities are under development with the goal of obtaining an“optical biopsy”to efficiently provide pathologic details.One such modality is confocal microscopy which allows in situ v...Objective:Novel optical imaging modalities are under development with the goal of obtaining an“optical biopsy”to efficiently provide pathologic details.One such modality is confocal microscopy which allows in situ visualization of cells within a layer of tissue and imaging of cellular-level structures.The goal of this study is to validate the ability of confocal microscopy to quickly and accurately differentiate between normal renal tissue and cancer.Methods:Specimens were obtained from patients who underwent robotic partial nephrectomy for renal mass.Samples of suspected normal and tumor tissue were extracted from the excised portion of the kidney and stained with acridine orange.The stained samples were imaged on a Nikon E600 C1 Confocal Microscope.The samples were then submitted for hematoxylin and eosin processing and read by an expert pathologist to provide a gold-standard diagnosis that can later be compared to the confocal images.Results:This study included 11 patients,17 tissue samples,and 118 confocal images.Of the 17 tissue samples,10 had a gold-standard diagnosis of cancer and seven were benign.Of 118 confocal images,66 had a gold-standard diagnosis of cancer and 52 were benign.Six confocal images were used as a training set to train eight observers.The observers were asked to rate the test images on a six point scale and the results were analyzed using a web based receiver operating characteristic curve calculator.The average accuracy,sensitivity,specificity,and area under the empirical receiver operating characteristic curve for this study were 91%,98%,81%,and 0.94 respectively.Conclusion:This preliminary study suggest that confocal microscopy can be used to distinguish cancer from normal tissue with high sensitivity and specificity.The observers in this study were trained quickly and on only six images.We expect even higher performance as observers become more familiar with the confocal images.展开更多
Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determina...Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determination of the corrective phases may not be completely accurate using conventional method,which undermines the performance of this technique.In this paper,we theoretically demonstrate a method that can obtain more accurate corrective phases by determining the phase values from the square root of the fuorescence signal.A numnerical simulation model is established to study the performance of adaptive optics in two-photon micros-copy by combining scalar diffraction theory with vector diffraction theory.The results show that the distortion of the wavefront can be corrected more thoroughly with our method in two-photon imaging.In our simulation,with the scattering from a 450-mn-thick mouse brain tissue,excitation focal spots with higher peak-to background ratio(PBR)and images with higher contrast can be obtained.Hence,further enhancement of the multidither COAT correction performance in two-photon imaging can be expected.展开更多
In this study,we propose a deep-learning-based method to correct motion artifacts in optical resolution photoacoustic microscopy(OR-PAM).The method is a convolutional neural network that establishes an end-to-end map ...In this study,we propose a deep-learning-based method to correct motion artifacts in optical resolution photoacoustic microscopy(OR-PAM).The method is a convolutional neural network that establishes an end-to-end map from input raw data with motion artifacts to output corrected images.First,we performed simulation studies to evaluate the feasibility and effectiveness of the proposed method.Second,we employed this method to process images of rat brain vessels with multiple motion artifacts to evaluate its performance for in vivo applications.The results demonstrate that this method works well for both large blood vessels and capillary networks.In comparison with traditional methods,the proposed method in this study can be easily modified to satisfy different scenarios of motion corrections in OR-PAM by revising the training sets.展开更多
We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its ...We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.展开更多
Determination of the precise location and the degree of the Choroidal neovascularization(CNV)lesion is essential for diagnosation Neovascular age-related macular degeneration(AMD)and evaluation the efficacy of treatme...Determination of the precise location and the degree of the Choroidal neovascularization(CNV)lesion is essential for diagnosation Neovascular age-related macular degeneration(AMD)and evaluation the efficacy of treatment.Noninvasive imaging techniques with specific contrast for CNV evaluation are demanded.In this paper,two noninvasive imaging techniques,namely Optical coherence tomography(OCT)and Photoacoustic microscopy(PAM),are combined to provide specific detection of CNV for their complimentary contrast mechanisms.In vivo time-serial evaluation of Laser-induced CNV in rats is present at days 1,3,5,7,14,21 after laser photocoagulation is applied to the rat fundus.Both OCT and PAM show that the CNV increases to its maximum at day 7 and decreases at day 14.Quantification of CNV area and CNV thickness is given.The dual-modal information of CNV is consistent with the histologic evaluation by hematoxylin and eosin(H&E)staining.展开更多
Optical properties of metallic edge-like structures known as knife-edges are a topic of interest and possess potential applications in enhanced Raman scattering, optical trapping, etc. In this work, we investigate the...Optical properties of metallic edge-like structures known as knife-edges are a topic of interest and possess potential applications in enhanced Raman scattering, optical trapping, etc. In this work, we investigate the near-field optical polar- ization response at the edge of a triangular gold nanosheet, which is synthesized by a wet chemical method. A homemade scanning near-field optical microscope (SNOM) in collection mode is adopted, which is able to accurately locate its probe at the edge during experiments. An uncoated straight fiber probe is used in the SNOM, because it s611 preserves the prop- erty of light polarization though it has the depolarization to some extent. By comparing near-field intensities at the edge and glass substrate, detected in different polarization directions of incident light, the edge-induced depolarization is found, which is supported by the finite differential time domain (FDTD) simulated results. The depolarized phenomenon in the near-field is similar to that in the far-field.展开更多
A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vac...A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.展开更多
Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from...Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from being obtained from deep regions of tissue.We review commontechniques,such as multiphoton microscopy(MPM)and optical coherence microscopy(OCM),for diffraction limited imaging beyond an imaging depth of 0.5 mm.Novel implementations havebeen emerging in recent years giving higher imaging speed,deeper penetration,and better imagequality.Focal modulation microscopy(FMM)is a novel method that combines confocal spatialfltering with focal modulation to reject out-of-focus background.FMM has demonstrated animaging depth comparable to those of MPM and OCM,near-real-time image acquisition,and thecapability for multiple contrast mechanisms.展开更多
Optical-resolution photoacoustic microscopy(OR-PAM)has been shown to be an excellent tool for high-resolution imaging of microvasculature,and quantitative analysis of the microvascula-ture can provide valuable informa...Optical-resolution photoacoustic microscopy(OR-PAM)has been shown to be an excellent tool for high-resolution imaging of microvasculature,and quantitative analysis of the microvascula-ture can provide valuable information for the early diagnosis and treatment of various vascular-related diseases.In order to address the characteristics of weak signals,discontinuity and small diameters in photoacoustic microvascular images,we propose a method adaptive to the micro-vascular segmentation in photoacoustic images,including Hessian matrix enhancement and the morphological connection operators.The accuracy of our vascular segmentation method is quantitatively evaluated by the multiple criteria.To obtain more precise and continuous mi-crovascular skeletons,an improved skeleton extraction framework based on the multistencil fast marching(MSFM)method is developed.We carried out in vivo OR-PAM microvascular imaging in mouse ears and subcutaneous hepatoma tumor model to verify the correctness and superiority of our proposed method.Compared with the previous methods,our proposed method can extract the microvascular network more completely,continuously and accurately,and provide an ef-fective solution for the quantitative analysis of photoacoustic microvascular images with many small branches.展开更多
Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejec...Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.展开更多
The mechanism of action of clearing agents to improve optical imaging of mouse skin during reflectance-mode confocal microscopy was tested.The dermal side of excised dorsal mouse skin was exposed for one hour to salin...The mechanism of action of clearing agents to improve optical imaging of mouse skin during reflectance-mode confocal microscopy was tested.The dermal side of excised dorsal mouse skin was exposed for one hour to saline,glycerin,or 80% DMSO,then the clearing agent was removed and the dermis placed against a glass cover slip through which a confocal microscope measured reflectance at 488 nm wavelength.An untreated control was also measured.The axial attenuation of reflectance signal,R(z_(f))versus increasing depth of focus zf behaved as R=ρexp(−μz_(f) 2G),where ρ is tissue reflectivity and μ is attenuation[cm^(−1)].The factor 2G accounts for the in/out path of photons,and the numerical aperture of the lens.The ρ,μ data were mapped to values of scattering coefficient(μ_(s)[cm^(−1)])and anisotropy of scattering(g).Images showed that glycerin significantly increased the g of dermis from about 0.7 to about 0.99,with little change in the μ_(s) of dermis at about 300cm^(−1).DMSO and saline had only slight and inconsistent effects on g and μ_(s).展开更多
Objective: To assess the missed opportunities from the diagnosis of bacilliferous pulmonary tuberculosis by optical microscopy compared to GeneXpert MTB/RIF between 2015 and 2019. Methods: This is a retrospective anal...Objective: To assess the missed opportunities from the diagnosis of bacilliferous pulmonary tuberculosis by optical microscopy compared to GeneXpert MTB/RIF between 2015 and 2019. Methods: This is a retrospective analysis of the diagnostic results of bacilliferous pulmonary tuberculosis in patients suspected of pulmonary tuberculosis at their first episode during the period. GeneXpert MTB/RIF (GeneXpert) and optical microscopy (OM) after Ziehl-Neelsen stained smear were performed on each patient’s sputum or gastric tubing fluid sample. Results: Among 341 patients suspected of pulmonary tuberculosis, 229 patients were declared bacilliferous tuberculosis by the two tests (67%), 220 patients by GeneXpert and 95 patients by OM, i.e. 64.5% versus 28% (p i.e. 58.5% of the positive cases detected by the two tests (134/229 patients) and 39.3% of the patients suspected of tuberculosis (134/341 patients). On the other hand, among 95 patients declared positive by OM, the GeneXpert ignored 9 (9.5%), i.e. 4% of all the positive cases detected by the two diagnostic tests (9/229 patients) and 3% of the patients suspected of tuberculosis (9/341 patients). The differences observed between the results of the two tests were statistically significant at the 5% threshold (p Conclusion: This study reveals missed diagnostic opportunities for bacilliferous pulmonary mycobacteriosis, statistically significant with optical microscopy than GeneXpert. The GeneXpert/optical microscopy couple could be a good contribution to the strategies for the elimination of pulmonary tuberculosis in sub-Saharan Africa.展开更多
Introduction The endothelial cells(ECs)lining every blood vessel wall constantly expose to the mechanical forces generated by the blood flow.The EC responses to these hemodynamic forces play a critical role in the hom...Introduction The endothelial cells(ECs)lining every blood vessel wall constantly expose to the mechanical forces generated by the blood flow.The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system.In addition to forming a transport barrier between the blood and vessel wall,vascular ECs play important roles in regulating circulation functions.Besides biochemical stimuli,blood flow induced(hemodynamic)mechanical stimuli,such as shear stress,pressure and circumferential stretch,modulate EC morphology and functions by activating mechanosensors,signaling pathways,and gene and protein expressions.The EC responses to the hemodynamic forces(mechano-sensing and transduction)are critical to maintaining normal vascular functions.Failure in the mechano-sensing and transduction leads to serious vascular diseases including hypertension,atherosclerosis,aneurysms and thrombosis,to name a few[1].On the luminal surface of our blood vessels,there is a thin layer called endothelial surface glycocalyx(ESG)which consists of proteoglycans,glycosaminoglycans(GAGs)and glycoproteins.The GAGs in the ESG are heparan sulfate(HS),hyaluronic acid(HA),chondroitin sulfate(CS),and sialic acid(SA)[2].In order to play important roles in vascular functions,such as being a mechanosensor and transducer for the endothelial cells(ECs)to sense the blood flow,a molecular sieve to maintain normal microvessel permeability and a barrier between the circulating cells and endothelial cells forming the vessel wall,the ESG should have an organized structure at the molecular level.Due to the limitations of optical and electron microscopy,the ultra-structure and organization of ESG has not been revealed until recent development of a super high resolution fluorescence optical microscope,STORM(Stochastic Optical Reconstruction Microscopy).The diffraction of a single fluorescence molecule can be described as the point spread function(PSF).When the light of wavelengthλexcites the fluorophore(emitter),the intensity profile of the spot is defined as the PSF with the width^0.6λ/NA,NA is the numerical aperture of the objective.The diffraction-limited image resolution,for a high numerical aperture objective lens,is^200 nm in the lateral direction and^500 nm in the axial direction,for a conventional fluorescence microscope.The key idea of the single-molecule localization microscopy is to light the molecule,in turn,to achieve the nanometer-level accuracy of their position and reconstruction into a super-resolution image,such as STORM.STORM employs photo-switching mechanisms to stochastically activate individual molecules(photo-switchable or photoactivatable fluorophores)within the diffraction-limited region at different times.Then images with sub-diffraction limit resolution are reconstructed from the measured positions of individual fluorophores[3].To trade the super spatial resolution(accuracy),STORM sacrifices its temporal resolution(efficiency)by switching the state and sequentially exciting the emitters at a high density.Rust et al[3]employed organic dyes and fluorescent proteins as photo-switchable emitters to trade temporal resolution for a super spatial resolution(~20 nm lateral and^50 nm axial at present,can go down to a couple of nanometers if using smaller peptides or antibody fragments instead of currently used whole anti-bodies),which is an order of magnitude higher than conventional confocal microscopy.In the current study,we employed STORM to reveal the major ultra-structural components of the ESG,HS and HA,and their organization at the surface of the cultured EC monolayer[4].Materials and methods We used newly acquired Nikon-STORM system to observe the ESG on in vitro EC(bEnd3,mouse brain microvascular endothelial cells)monolayers.After confluency,the bEnd3 cells were immunolabeled with anti-HS,fol-lowed by an ATT0488 conjugated goat anti-mouse IgG,and with biotinylated HA binding protein,followed by an AF647 conjugated anti-biotin.The ESG was then imaged by the STORM with a 100x/1.49 oil immersed lens.Multiple Reporters of ATT0488 and AF647 with alternating illumination were used to acquire the 3D images of HS and HA.The field of 256×256(40×40μm2)of HS and HA at the surface of ECs was obtained based on totally 40,000 of EM-CCD captured images for each reporter at a capturing speed of 19 ms/frame.Results HA is a long molecule weaving into a network which covers the endothelial luminal surface.The diameter of the HA segments is 185.3±44.7 nm,155.5±57.2 nm,and 156.9±56.1 nm,respectively,at the top,middle and bottom regions of the cell luminal surface.In contrast,HS is a shorter molecule,perpendicular to the cell surface.HA and HS are partially overlapped with each other at the endothelial luminal surface.We quantified the length,diameter,orientation,and density of HS at the top,middle and bottom regions of the endothelial surface.The diameter of the observed HS is 191.0±46.0 nm,284.3±71.1 nm,and 184.2±59.6 nm,and the length of the HS is 621.0±75.7 nm,651.0±118.0 nm,and 575.2±105.6 nm,respectively,at the top,middle and bottom regions of the cell luminal surface.For the HS orientation,its angle with the cell surface is 92.9±1.9,88.7±8.2,and 96.2±10.9 degree,respectively,at the top,middle and bottom regions.The angle of 90 degree is perfectly perpendicular to the cell surface.For the HS distribution,the average density is0.398 elements/μm2,0.345 elements/μm2 and 0.665 elements/μm2,respectively,and the distance between the adjacent HS is 1 694.4±628.1 nm,1 844.8±758.5 nm,and 1 221.9±450.7 nm,respectively,at the top,middle and bottom regions.Conclusions Our results suggest that HS plays a major role in mechanosensing and HA plays a major role in the molecular sieve,due to their organization,ultra-structure and distribution.展开更多
Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuit...Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.展开更多
In this contribution, an experimental setup to investigate the defect luminescence between 0.72 - 0.85 eV of single defects in Silicon by optical microscopy is introduced. For this purpose, an optical microscope is eq...In this contribution, an experimental setup to investigate the defect luminescence between 0.72 - 0.85 eV of single defects in Silicon by optical microscopy is introduced. For this purpose, an optical microscope is equipped with an InGaAs CCD detector and a longpass filter with a cut-off wavelength at 1450 nm in order to filter out the band-to-band luminescence at around 1.1 eV. Grain boundaries showing homogeneous distributed defect luminescence can be localized at a μm-scale.展开更多
This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic...This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic beam illuminates a supersphere SIL microscopy,the dispersion effect of the SIL has an important influence on the image quality.As the wavelength bandwidth of the non-monochromatic beam increases,the size of the focused spot increases and its intensity decreases in near-field microscopy systems with a supersphere SIL.展开更多
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by the Alpha Foundation for the Improvement of Mine Safety and Health,grant number AFC316FO-84.
文摘Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.
文摘AIM:To compare the agreement of anterior chamber depth(ACD)and central vault measurements obtained by anterior segment optical coherence tomography(AS-OCT)and ultrasound biomicroscopy(UBM)of post surgical high myopic eyes with posterior chamber phakic intraocular lens(Visian ICL;STAAR Surgical)implantation.·METHODS:Fifty-two phakic eyes of 28 high myopic patients who underwent implantable Collamer lens(ICL)surgery for the correction of high myopia were studied.The postoperative ACD,the distance between the corneal endothelium and the anterior surface of ICL(cornea-ICL)and the central vault were measured with the AS-OCT system and the UBM system.Intraclass correlation coefficient(ICC)and the Bland-Altman plot were used to evaluate the repeatability and agreement of two devices.·R ESULTS:The mean ACD,cornea-ICL and central vault in the 52 phakic eyes after ICL surgery was 3.19±0.28 mm,2.47±0.28 mm,0.50±0.19 mm by AS-OCT and3.13±0.25 mm,2.49±0.25 mm,0.44±0.19 mm by UBM,respectively.Pairwise comparison of ACD and central vault measurements showed significant differences between AS-OCT and UBM(〈0.05).However,no statistically significant difference was found between these imaging techniques in cornea-ICL(〉0.05).The Pearson correlation coefficient()between AS-OCT and UBM measurements for ACD,cornea-ICL and vault was0.88,0.80 and 0.89,respectively(〈0.001).The ICC was0.89-0.94 for the measurements of AS-OCT and UBM.Bland-Altman analysis showed the 95%limits of agreement of ACD,cornea-ICL,central vault measurements between these two devices were-0.20 to 0.32 mm,-0.36to 0.32 mm and-0.12 to 0.24 mm,respectively.58·CONCLUSION:Central ACD and vault measurements using AS-OCT demonstrated a slight significantly higher value than using UBM in phakic eyes after ICL surgery.These two devices should not be used interchangeably for measurements of central ACD and vault in patients after phakic intraocular lens implantation.
基金Research reported in this publication was supported by the National Cancer Institute Cancer Center Support Grant(P30 CA023074)and used the Tissue Acquisition and Cellular/Molecular Analysis Shared Resource at the University of Arizona.
文摘Objective:Novel optical imaging modalities are under development with the goal of obtaining an“optical biopsy”to efficiently provide pathologic details.One such modality is confocal microscopy which allows in situ visualization of cells within a layer of tissue and imaging of cellular-level structures.The goal of this study is to validate the ability of confocal microscopy to quickly and accurately differentiate between normal renal tissue and cancer.Methods:Specimens were obtained from patients who underwent robotic partial nephrectomy for renal mass.Samples of suspected normal and tumor tissue were extracted from the excised portion of the kidney and stained with acridine orange.The stained samples were imaged on a Nikon E600 C1 Confocal Microscope.The samples were then submitted for hematoxylin and eosin processing and read by an expert pathologist to provide a gold-standard diagnosis that can later be compared to the confocal images.Results:This study included 11 patients,17 tissue samples,and 118 confocal images.Of the 17 tissue samples,10 had a gold-standard diagnosis of cancer and seven were benign.Of 118 confocal images,66 had a gold-standard diagnosis of cancer and 52 were benign.Six confocal images were used as a training set to train eight observers.The observers were asked to rate the test images on a six point scale and the results were analyzed using a web based receiver operating characteristic curve calculator.The average accuracy,sensitivity,specificity,and area under the empirical receiver operating characteristic curve for this study were 91%,98%,81%,and 0.94 respectively.Conclusion:This preliminary study suggest that confocal microscopy can be used to distinguish cancer from normal tissue with high sensitivity and specificity.The observers in this study were trained quickly and on only six images.We expect even higher performance as observers become more familiar with the confocal images.
基金supported by National Natural Science Foundation of China(Nos.31571110 and 81771877)Natural Science Foundation of Zhejiang Province of China(LZ17F050001)the Fundamental Research Funds for the Central Universities.
文摘Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determination of the corrective phases may not be completely accurate using conventional method,which undermines the performance of this technique.In this paper,we theoretically demonstrate a method that can obtain more accurate corrective phases by determining the phase values from the square root of the fuorescence signal.A numnerical simulation model is established to study the performance of adaptive optics in two-photon micros-copy by combining scalar diffraction theory with vector diffraction theory.The results show that the distortion of the wavefront can be corrected more thoroughly with our method in two-photon imaging.In our simulation,with the scattering from a 450-mn-thick mouse brain tissue,excitation focal spots with higher peak-to background ratio(PBR)and images with higher contrast can be obtained.Hence,further enhancement of the multidither COAT correction performance in two-photon imaging can be expected.
基金This work was sponsored by National Natural Science Foundation of China,Nos.81571722,61775028 and 61528401.
文摘In this study,we propose a deep-learning-based method to correct motion artifacts in optical resolution photoacoustic microscopy(OR-PAM).The method is a convolutional neural network that establishes an end-to-end map from input raw data with motion artifacts to output corrected images.First,we performed simulation studies to evaluate the feasibility and effectiveness of the proposed method.Second,we employed this method to process images of rat brain vessels with multiple motion artifacts to evaluate its performance for in vivo applications.The results demonstrate that this method works well for both large blood vessels and capillary networks.In comparison with traditional methods,the proposed method in this study can be easily modified to satisfy different scenarios of motion corrections in OR-PAM by revising the training sets.
基金supported by the National Natural Science Foundation of China(Grant No.61178086)Science and Technology Program of Guangzhou,China(Grant No.2012J4300138)Foundation for Distinguished Young Talents in South China Normal University,China.(Grant No.2012KJ010).
文摘We demonstrate the feasibility of simultancous multi-probe detection for an optcal-resolution photoacoustic microscopy(OR-PAM)system.OR-P AM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth.OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules.However,given the inadequate absoption of some biomolcules,detection sensitivity at the same incident intensity requires improvement.In this study,a modulated continuous wave with power density less than 3mW/cm^(2)(1/4 of the ANSI safety limit)excited the weak photoacoustic(PA)signals of biological cells.A microcavity traneducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid;air pressure variation is inversely proportional to cavity volume at the same temperature increase.Considering that a PA wave expands in various directions,detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio.Therefore,we employ four detectors to acquire tiny PA signals simul-taneously.Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.
基金This work was supported by the Natural National Science Foundation of China(Grant Nos.61675134,61307015,81827807 and 68175123)Science and Technology innovation project of Shanghai Science and Technology Commission(19441905800)Project of State Key Laboratory of Ophthalmology,Optometry and Visual Science,Wenzhou Medical University(K181002).
文摘Determination of the precise location and the degree of the Choroidal neovascularization(CNV)lesion is essential for diagnosation Neovascular age-related macular degeneration(AMD)and evaluation the efficacy of treatment.Noninvasive imaging techniques with specific contrast for CNV evaluation are demanded.In this paper,two noninvasive imaging techniques,namely Optical coherence tomography(OCT)and Photoacoustic microscopy(PAM),are combined to provide specific detection of CNV for their complimentary contrast mechanisms.In vivo time-serial evaluation of Laser-induced CNV in rats is present at days 1,3,5,7,14,21 after laser photocoagulation is applied to the rat fundus.Both OCT and PAM show that the CNV increases to its maximum at day 7 and decreases at day 14.Quantification of CNV area and CNV thickness is given.The dual-modal information of CNV is consistent with the histologic evaluation by hematoxylin and eosin(H&E)staining.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB934004)the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-13-D2-XX-14)
文摘Optical properties of metallic edge-like structures known as knife-edges are a topic of interest and possess potential applications in enhanced Raman scattering, optical trapping, etc. In this work, we investigate the near-field optical polar- ization response at the edge of a triangular gold nanosheet, which is synthesized by a wet chemical method. A homemade scanning near-field optical microscope (SNOM) in collection mode is adopted, which is able to accurately locate its probe at the edge during experiments. An uncoated straight fiber probe is used in the SNOM, because it s611 preserves the prop- erty of light polarization though it has the depolarization to some extent. By comparing near-field intensities at the edge and glass substrate, detected in different polarization directions of incident light, the edge-induced depolarization is found, which is supported by the finite differential time domain (FDTD) simulated results. The depolarized phenomenon in the near-field is similar to that in the far-field.
基金Project supported by the National Natural Science Foundation of China(Grant No.20933010)the National Basic Research Program of China(Grant No.2013CB834800)
文摘A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.
文摘Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from being obtained from deep regions of tissue.We review commontechniques,such as multiphoton microscopy(MPM)and optical coherence microscopy(OCM),for diffraction limited imaging beyond an imaging depth of 0.5 mm.Novel implementations havebeen emerging in recent years giving higher imaging speed,deeper penetration,and better imagequality.Focal modulation microscopy(FMM)is a novel method that combines confocal spatialfltering with focal modulation to reject out-of-focus background.FMM has demonstrated animaging depth comparable to those of MPM and OCM,near-real-time image acquisition,and thecapability for multiple contrast mechanisms.
基金supported in part by the National Natural Science Foundation of China Grants[Nos.91739117 and 61701279]
文摘Optical-resolution photoacoustic microscopy(OR-PAM)has been shown to be an excellent tool for high-resolution imaging of microvasculature,and quantitative analysis of the microvascula-ture can provide valuable information for the early diagnosis and treatment of various vascular-related diseases.In order to address the characteristics of weak signals,discontinuity and small diameters in photoacoustic microvascular images,we propose a method adaptive to the micro-vascular segmentation in photoacoustic images,including Hessian matrix enhancement and the morphological connection operators.The accuracy of our vascular segmentation method is quantitatively evaluated by the multiple criteria.To obtain more precise and continuous mi-crovascular skeletons,an improved skeleton extraction framework based on the multistencil fast marching(MSFM)method is developed.We carried out in vivo OR-PAM microvascular imaging in mouse ears and subcutaneous hepatoma tumor model to verify the correctness and superiority of our proposed method.Compared with the previous methods,our proposed method can extract the microvascular network more completely,continuously and accurately,and provide an ef-fective solution for the quantitative analysis of photoacoustic microvascular images with many small branches.
基金National Natural Science Foundation of China(60077031)
文摘Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.
基金the National Institutes of Health(R01-CA113947,R01-HL084013)in the USAsupported by the National Institutes of Health under the Ruth L.Kirschstein National Research Service Award 5-T32-CA106195-05,“Training in the Molecular Basis of Skin Pathobiology”,from the National Cancer Institute and the OHSU Cancer Institutefunded by the National Cancer Institute,CA-069533.
文摘The mechanism of action of clearing agents to improve optical imaging of mouse skin during reflectance-mode confocal microscopy was tested.The dermal side of excised dorsal mouse skin was exposed for one hour to saline,glycerin,or 80% DMSO,then the clearing agent was removed and the dermis placed against a glass cover slip through which a confocal microscope measured reflectance at 488 nm wavelength.An untreated control was also measured.The axial attenuation of reflectance signal,R(z_(f))versus increasing depth of focus zf behaved as R=ρexp(−μz_(f) 2G),where ρ is tissue reflectivity and μ is attenuation[cm^(−1)].The factor 2G accounts for the in/out path of photons,and the numerical aperture of the lens.The ρ,μ data were mapped to values of scattering coefficient(μ_(s)[cm^(−1)])and anisotropy of scattering(g).Images showed that glycerin significantly increased the g of dermis from about 0.7 to about 0.99,with little change in the μ_(s) of dermis at about 300cm^(−1).DMSO and saline had only slight and inconsistent effects on g and μ_(s).
文摘Objective: To assess the missed opportunities from the diagnosis of bacilliferous pulmonary tuberculosis by optical microscopy compared to GeneXpert MTB/RIF between 2015 and 2019. Methods: This is a retrospective analysis of the diagnostic results of bacilliferous pulmonary tuberculosis in patients suspected of pulmonary tuberculosis at their first episode during the period. GeneXpert MTB/RIF (GeneXpert) and optical microscopy (OM) after Ziehl-Neelsen stained smear were performed on each patient’s sputum or gastric tubing fluid sample. Results: Among 341 patients suspected of pulmonary tuberculosis, 229 patients were declared bacilliferous tuberculosis by the two tests (67%), 220 patients by GeneXpert and 95 patients by OM, i.e. 64.5% versus 28% (p i.e. 58.5% of the positive cases detected by the two tests (134/229 patients) and 39.3% of the patients suspected of tuberculosis (134/341 patients). On the other hand, among 95 patients declared positive by OM, the GeneXpert ignored 9 (9.5%), i.e. 4% of all the positive cases detected by the two diagnostic tests (9/229 patients) and 3% of the patients suspected of tuberculosis (9/341 patients). The differences observed between the results of the two tests were statistically significant at the 5% threshold (p Conclusion: This study reveals missed diagnostic opportunities for bacilliferous pulmonary mycobacteriosis, statistically significant with optical microscopy than GeneXpert. The GeneXpert/optical microscopy couple could be a good contribution to the strategies for the elimination of pulmonary tuberculosis in sub-Saharan Africa.
基金supported by NIH-1SC1CA153325-01,NSF-MRI CBET 1337746 and 1UG3TR002151-01
文摘Introduction The endothelial cells(ECs)lining every blood vessel wall constantly expose to the mechanical forces generated by the blood flow.The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system.In addition to forming a transport barrier between the blood and vessel wall,vascular ECs play important roles in regulating circulation functions.Besides biochemical stimuli,blood flow induced(hemodynamic)mechanical stimuli,such as shear stress,pressure and circumferential stretch,modulate EC morphology and functions by activating mechanosensors,signaling pathways,and gene and protein expressions.The EC responses to the hemodynamic forces(mechano-sensing and transduction)are critical to maintaining normal vascular functions.Failure in the mechano-sensing and transduction leads to serious vascular diseases including hypertension,atherosclerosis,aneurysms and thrombosis,to name a few[1].On the luminal surface of our blood vessels,there is a thin layer called endothelial surface glycocalyx(ESG)which consists of proteoglycans,glycosaminoglycans(GAGs)and glycoproteins.The GAGs in the ESG are heparan sulfate(HS),hyaluronic acid(HA),chondroitin sulfate(CS),and sialic acid(SA)[2].In order to play important roles in vascular functions,such as being a mechanosensor and transducer for the endothelial cells(ECs)to sense the blood flow,a molecular sieve to maintain normal microvessel permeability and a barrier between the circulating cells and endothelial cells forming the vessel wall,the ESG should have an organized structure at the molecular level.Due to the limitations of optical and electron microscopy,the ultra-structure and organization of ESG has not been revealed until recent development of a super high resolution fluorescence optical microscope,STORM(Stochastic Optical Reconstruction Microscopy).The diffraction of a single fluorescence molecule can be described as the point spread function(PSF).When the light of wavelengthλexcites the fluorophore(emitter),the intensity profile of the spot is defined as the PSF with the width^0.6λ/NA,NA is the numerical aperture of the objective.The diffraction-limited image resolution,for a high numerical aperture objective lens,is^200 nm in the lateral direction and^500 nm in the axial direction,for a conventional fluorescence microscope.The key idea of the single-molecule localization microscopy is to light the molecule,in turn,to achieve the nanometer-level accuracy of their position and reconstruction into a super-resolution image,such as STORM.STORM employs photo-switching mechanisms to stochastically activate individual molecules(photo-switchable or photoactivatable fluorophores)within the diffraction-limited region at different times.Then images with sub-diffraction limit resolution are reconstructed from the measured positions of individual fluorophores[3].To trade the super spatial resolution(accuracy),STORM sacrifices its temporal resolution(efficiency)by switching the state and sequentially exciting the emitters at a high density.Rust et al[3]employed organic dyes and fluorescent proteins as photo-switchable emitters to trade temporal resolution for a super spatial resolution(~20 nm lateral and^50 nm axial at present,can go down to a couple of nanometers if using smaller peptides or antibody fragments instead of currently used whole anti-bodies),which is an order of magnitude higher than conventional confocal microscopy.In the current study,we employed STORM to reveal the major ultra-structural components of the ESG,HS and HA,and their organization at the surface of the cultured EC monolayer[4].Materials and methods We used newly acquired Nikon-STORM system to observe the ESG on in vitro EC(bEnd3,mouse brain microvascular endothelial cells)monolayers.After confluency,the bEnd3 cells were immunolabeled with anti-HS,fol-lowed by an ATT0488 conjugated goat anti-mouse IgG,and with biotinylated HA binding protein,followed by an AF647 conjugated anti-biotin.The ESG was then imaged by the STORM with a 100x/1.49 oil immersed lens.Multiple Reporters of ATT0488 and AF647 with alternating illumination were used to acquire the 3D images of HS and HA.The field of 256×256(40×40μm2)of HS and HA at the surface of ECs was obtained based on totally 40,000 of EM-CCD captured images for each reporter at a capturing speed of 19 ms/frame.Results HA is a long molecule weaving into a network which covers the endothelial luminal surface.The diameter of the HA segments is 185.3±44.7 nm,155.5±57.2 nm,and 156.9±56.1 nm,respectively,at the top,middle and bottom regions of the cell luminal surface.In contrast,HS is a shorter molecule,perpendicular to the cell surface.HA and HS are partially overlapped with each other at the endothelial luminal surface.We quantified the length,diameter,orientation,and density of HS at the top,middle and bottom regions of the endothelial surface.The diameter of the observed HS is 191.0±46.0 nm,284.3±71.1 nm,and 184.2±59.6 nm,and the length of the HS is 621.0±75.7 nm,651.0±118.0 nm,and 575.2±105.6 nm,respectively,at the top,middle and bottom regions of the cell luminal surface.For the HS orientation,its angle with the cell surface is 92.9±1.9,88.7±8.2,and 96.2±10.9 degree,respectively,at the top,middle and bottom regions.The angle of 90 degree is perfectly perpendicular to the cell surface.For the HS distribution,the average density is0.398 elements/μm2,0.345 elements/μm2 and 0.665 elements/μm2,respectively,and the distance between the adjacent HS is 1 694.4±628.1 nm,1 844.8±758.5 nm,and 1 221.9±450.7 nm,respectively,at the top,middle and bottom regions.Conclusions Our results suggest that HS plays a major role in mechanosensing and HA plays a major role in the molecular sieve,due to their organization,ultra-structure and distribution.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0303800)National Natural Science Foundation of China(Grant No.61575218)Defense Industrial Technology Development Program,China(Grant No.JCKY201601C006)
文摘Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.
文摘In this contribution, an experimental setup to investigate the defect luminescence between 0.72 - 0.85 eV of single defects in Silicon by optical microscopy is introduced. For this purpose, an optical microscope is equipped with an InGaAs CCD detector and a longpass filter with a cut-off wavelength at 1450 nm in order to filter out the band-to-band luminescence at around 1.1 eV. Grain boundaries showing homogeneous distributed defect luminescence can be localized at a μm-scale.
基金Project supported by National Natural Science Foundation of China (Grant No 60777005)
文摘This paper studies the dispersion effect of the supersphere solid immersion lens (SIL) on a near field optical microscopy system by using the vector diffraction theory.Results show that when a real non-monochromatic beam illuminates a supersphere SIL microscopy,the dispersion effect of the SIL has an important influence on the image quality.As the wavelength bandwidth of the non-monochromatic beam increases,the size of the focused spot increases and its intensity decreases in near-field microscopy systems with a supersphere SIL.