We theoretically investigate the multistable behavior of a hybrid optomechanical system, in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical par...We theoretically investigate the multistable behavior of a hybrid optomechanical system, in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier (OPA). It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA, the phase of the field pumping the OPA, the power and frequency of the field driving the cavity, and the Coulomb coupling strength between the two charged mechanical resonators. In particular, the increase of the nonlinear gain parameter can result in a transition from bistability to tristability. Moreover, the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.展开更多
Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation.Therefore,on the basis of quantum optics and solid-...Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation.Therefore,on the basis of quantum optics and solid-material scientific principles,we show that optical bistability and multistability can be generated in graphene nanostructure under strong magnetic field.We also show that by adjusting the intensity and detuning of infrared laser field,the threshold intensity and hysteresis loop can be manipulated efficiently.The effects of the electronic cooperation parameter which are directly proportional to the electronic number density and the length of the graphene sample are discussed.Our proposed model may be useful for the nextgeneration all-optical systems and information processing based on nano scale devices.展开更多
We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells an...We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al_(0.3)Ga_(0.7)As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.展开更多
We investigate the optical bistability and multistability behaviors in a closed three-level A-type atomic system. By adding a sideband on either hand of the transitions which are originally coupled by a coherent contr...We investigate the optical bistability and multistability behaviors in a closed three-level A-type atomic system. By adding a sideband on either hand of the transitions which are originally coupled by a coherent control field and a coherent probe field to disturb the two-photon resonance, bistability occurs due to two-channel interference. Increasing the sideband Rabi frequency leads to the switching from bistability to tristability. When the sideband simultaneously couples with both hands, we can easily obtain quadrastability.展开更多
We investigate the optical bistabiiity (OB) in a duplicated two-level system contained in a ring cavity. The atoms are driven by two orthogonally polarized fields with a relative phase. The OB behavior of such a sys...We investigate the optical bistabiiity (OB) in a duplicated two-level system contained in a ring cavity. The atoms are driven by two orthogonally polarized fields with a relative phase. The OB behavior of such a system can be controlled by the amplitude and the relative phase of the coupling field, and it is possible to switch between bistabilitv and multistability by adjusting the relative phase.展开更多
Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference ar...Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11304110)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20130413 and BK20140450)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.13KJB140002)
文摘We theoretically investigate the multistable behavior of a hybrid optomechanical system, in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier (OPA). It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA, the phase of the field pumping the OPA, the power and frequency of the field driving the cavity, and the Coulomb coupling strength between the two charged mechanical resonators. In particular, the increase of the nonlinear gain parameter can result in a transition from bistability to tristability. Moreover, the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.
文摘Electrons in graphene nanoribbons can lead to exceptionally strong optical responses in the infrared and terahertz regions owing to their unusual dispersion relation.Therefore,on the basis of quantum optics and solid-material scientific principles,we show that optical bistability and multistability can be generated in graphene nanostructure under strong magnetic field.We also show that by adjusting the intensity and detuning of infrared laser field,the threshold intensity and hysteresis loop can be manipulated efficiently.The effects of the electronic cooperation parameter which are directly proportional to the electronic number density and the length of the graphene sample are discussed.Our proposed model may be useful for the nextgeneration all-optical systems and information processing based on nano scale devices.
文摘We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al_(0.3)Ga_(0.7)As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.
基金supported by the National Natural Science Foundation of China(No.60708008)the Project of Academic Leaders in Shanghai (No. 07XD14030)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘We investigate the optical bistability and multistability behaviors in a closed three-level A-type atomic system. By adding a sideband on either hand of the transitions which are originally coupled by a coherent control field and a coherent probe field to disturb the two-photon resonance, bistability occurs due to two-channel interference. Increasing the sideband Rabi frequency leads to the switching from bistability to tristability. When the sideband simultaneously couples with both hands, we can easily obtain quadrastability.
基金supported by the National Natural Science Foundation of China(Nos.61108006 and 11104221)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.11JK0529)+2 种基金the Natural Science Basis Research Plan in Shaanxi Province of China(No.2010JQ1002)the Doctoral Program Foundation of Institutions of Higher Education of China(No.20106101120020)the support from the Science Foundation of Northwest University(No.10NW14)
文摘We investigate the optical bistabiiity (OB) in a duplicated two-level system contained in a ring cavity. The atoms are driven by two orthogonally polarized fields with a relative phase. The OB behavior of such a system can be controlled by the amplitude and the relative phase of the coupling field, and it is possible to switch between bistabilitv and multistability by adjusting the relative phase.
文摘Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.