The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related ...The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.展开更多
A new vision coordinate measuring system--single camera 3 D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced w...A new vision coordinate measuring system--single camera 3 D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.展开更多
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
The optical noninvasive diagnostic of characteristic of silicon semiconductor devices by using a InGaAsP/InP semiconductor laser as an optical probe is reported. The principle of experimental method is based on the de...The optical noninvasive diagnostic of characteristic of silicon semiconductor devices by using a InGaAsP/InP semiconductor laser as an optical probe is reported. The principle of experimental method is based on the dependence of the optical refractive index on the carrier charge density in the active region of devices and detection of variation of refractive index by two laser beam interferometric techniques.展开更多
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small s...Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small separate volume in plasma, thus enabling to diagnose the plasma uniformity for different experimental parameters. Both the gas pressure and the low- frequency (LF) power have apparent effects on the radial uniformity of argon plasma. With the increase in either pressure or LF power, the emission profiles changed from a bell-shaped to a double-peak distribution. The influence of a fused-silica ring around the electrodes on the plasma uniformity was also studied using the optical probe. Possible reasons that result in nonuniform plasmas in our experiments are discussed.展开更多
The ratio measurement by means of the sensing optical fiber and the reference fiber with different beginning positions, and the technique to improve the stability of the sensor are first described. Then the ability to...The ratio measurement by means of the sensing optical fiber and the reference fiber with different beginning positions, and the technique to improve the stability of the sensor are first described. Then the ability to restrain and compensate the interference of the same nature through the double channel ratio measurement is illustrated. Finally, the performance of sensor and its engineering design are discussed.展开更多
Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper c...Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.展开更多
A new optical fiber fluoroptic thermometer based on the temperature—fluoroptic characteristic of fluoroptic materials is presented.The ratio technique of intensities of fluorescent emission lines of certain rare eart...A new optical fiber fluoroptic thermometer based on the temperature—fluoroptic characteristic of fluoroptic materials is presented.The ratio technique of intensities of fluorescent emission lines of certain rare earth phosphors is used,making the measurement of temperatures of the system to 0.5 ℃ precision. The characteristics of thermometer are discussed and the experiment results of temperature are given.展开更多
The focus of this paper is on the measurement and calculation model of void fraction for the vertical upward co-current air-water slug flow in a circular tube of 15 mm inner diameter. High-speed photography and optica...The focus of this paper is on the measurement and calculation model of void fraction for the vertical upward co-current air-water slug flow in a circular tube of 15 mm inner diameter. High-speed photography and optical probes were utilized, with water superficial velocity ranging from 0.089 to 0.65 m·s^(-1)and gas superficial velocity ranging from 0.049 to 0.65 m·s^(-1). A new void fraction model based on the local parameters was proposed, disposing the slug flow as a combination of Taylor bubbles and liquid slugs. In the Taylor bubble region, correction factors of liquid film thickness Cδand nose shape CZ*were proposed to calculate aTB. In the liquid slug region, the radial void fraction distribution profiles were obtained to calculate aLS, by employing the image processing technique based on supervised machine learning. Results showed that the void fraction proportion in Taylor bubbles occupied crucial contribution to the overall void fraction. Multiple types of void fraction predictive correlations were assessed using the present data. The performance of the Schmidt model was optimal, while some models for slug flow performed not outstanding. Additionally, a predictive correlation was correlated between the central local void fraction and the cross-sectional averaged void fraction, as a straightforward form of the void fraction calculation model. The predictive correlation showed a good agreement with the present experimental data, as well as the data of Olerni et al., indicating that the new model was effective and applicable under the slug flow conditions.展开更多
The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber prob...The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe(FPFP).The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode.The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe,it effectively improves the local spot intensity at the tip.Furthermore,the experimental results verify that the FPFP(tip curvature radius is 20 nm)prepared by chemical etching method can obtain a nanofocusing spot at the tip.The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP,the 36.9 nm slit width is clearly identified by the FPFP.展开更多
Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron mic...Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical c...An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.展开更多
Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to c...Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.展开更多
An optical probing of laser–plasma interactions can provide time-resolved measurements of plasma density;however,single-shot and multi-frame probing capabilities generally rely on complex setups with limited flexibil...An optical probing of laser–plasma interactions can provide time-resolved measurements of plasma density;however,single-shot and multi-frame probing capabilities generally rely on complex setups with limited flexibility.We have demonstrated a new method for temporal resolution of the rapid dynamics(∼170 fs)of plasma evolution within a single laser shot based on the generation of several consecutive probe pulses from a single beta barium borate-based optical parametric amplifier using a fraction of the driver pulse with the possibility to adjust the central wavelengths and delays of particular pulses by optical delay lines.The flexibility and scalability of the proposed experimental technique are presented and discussed.展开更多
Experiments were carried out to investigate the liquid flow distribution at high gas/liquid ratios in a cold model monolith bed of a 0.048 m diameter with 62 cells per cm2.Three types of distributor for the liquid dis...Experiments were carried out to investigate the liquid flow distribution at high gas/liquid ratios in a cold model monolith bed of a 0.048 m diameter with 62 cells per cm2.Three types of distributor for the liquid distribu-tion were used to evaluate their distribution performance.Local liquid saturation in individual channels was meas-ured using 16 single-point optical fiber probes mounted inside the channels.The results indicate that 1) The optical fiber probe technique can measure phase distribution in the monolith bed;2) Liquid saturation distribution along the radial direction of the monolith bed is not uniform and the extent of non-uniformity depends on the distributor de-sign and phase velocities;and 3) The tube array distributor provides superior liquid distribution performance over the showerhead and nozzle distributors.展开更多
This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe m...This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.展开更多
The properties of near-field optics have always been the focus of nano-measurement technology.The 11th order effective nearfield optical signal with an incident laser wavelength of 1,550 nm is obtained using a platinu...The properties of near-field optics have always been the focus of nano-measurement technology.The 11th order effective nearfield optical signal with an incident laser wavelength of 1,550 nm is obtained using a platinum-coated optical probe(Pt–Si probe).The experimental results show that the local electric field intensity of the Pt–Si probe is nearly 30 times higher than that of silicon probe(Si probe).Therefore,the highest 7th order near-field optical imaging results are obtained with the Pt–Si probe.Further,near-field optical imaging is performed on samples such as gold grids and carbon nanotubes using the Pt–Si probe.The measurement results show that the high-order signal has the characteristics of less background,higher signal-to-noise ratio,and resolution up to 5.7 nm.展开更多
A synthesized cyclometalated palladium-azo complex was explored as a multifunctional probe for visual detection of SO2, H2S and NH3 in water. In acidic aqueous environment, the sensing solution underwent a sharp color...A synthesized cyclometalated palladium-azo complex was explored as a multifunctional probe for visual detection of SO2, H2S and NH3 in water. In acidic aqueous environment, the sensing solution underwent a sharp color change from poor violet to deep blue when titrated with Na2SO3 standard solution. But the color changed from poor violet to bright yellow when titrated with Na2S standard solution. In basic environment, the sensing solution rapidly changed to magenta when titrated by NH4Cl-NH3 standard buffer solution at high concentration. However, the color of sensing solution changed to blue when titrated by NH4Cl-NH3 standard buffer solution at low concentration although the pH was kept constant during the titration. Different species of these hazardous gases at environmentally relevant concentration levels were differentiated by independent optical signal outputs, and the interference from other inorganic ions commonly existing in water was very small.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2009371)the National High Technology Research and Development Program of China ("863" Program) (2008AA02Z438)~~
文摘The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.
文摘A new vision coordinate measuring system--single camera 3 D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
文摘The optical noninvasive diagnostic of characteristic of silicon semiconductor devices by using a InGaAsP/InP semiconductor laser as an optical probe is reported. The principle of experimental method is based on the dependence of the optical refractive index on the carrier charge density in the active region of devices and detection of variation of refractive index by two laser beam interferometric techniques.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金supported by National Natural Science Foundation of China (Nos. 10635010, 10975029)Beijing Key Laboratory of Printing & Packaging Materials and Technology of Beijing Institute of Graphic Communication of China (No. KF201004)
文摘Local measurement of plasma radial uniformity was performed in a dual frequency capacitively coupled argon plasma (DF-CCP) reactor using an optical probe. The optical probe collects the light emission from a small separate volume in plasma, thus enabling to diagnose the plasma uniformity for different experimental parameters. Both the gas pressure and the low- frequency (LF) power have apparent effects on the radial uniformity of argon plasma. With the increase in either pressure or LF power, the emission profiles changed from a bell-shaped to a double-peak distribution. The influence of a fused-silica ring around the electrodes on the plasma uniformity was also studied using the optical probe. Possible reasons that result in nonuniform plasmas in our experiments are discussed.
文摘The ratio measurement by means of the sensing optical fiber and the reference fiber with different beginning positions, and the technique to improve the stability of the sensor are first described. Then the ability to restrain and compensate the interference of the same nature through the double channel ratio measurement is illustrated. Finally, the performance of sensor and its engineering design are discussed.
文摘Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.
文摘A new optical fiber fluoroptic thermometer based on the temperature—fluoroptic characteristic of fluoroptic materials is presented.The ratio technique of intensities of fluorescent emission lines of certain rare earth phosphors is used,making the measurement of temperatures of the system to 0.5 ℃ precision. The characteristics of thermometer are discussed and the experiment results of temperature are given.
基金supported by National Key Research and Development Program of China ( 2018YFE011061)。
文摘The focus of this paper is on the measurement and calculation model of void fraction for the vertical upward co-current air-water slug flow in a circular tube of 15 mm inner diameter. High-speed photography and optical probes were utilized, with water superficial velocity ranging from 0.089 to 0.65 m·s^(-1)and gas superficial velocity ranging from 0.049 to 0.65 m·s^(-1). A new void fraction model based on the local parameters was proposed, disposing the slug flow as a combination of Taylor bubbles and liquid slugs. In the Taylor bubble region, correction factors of liquid film thickness Cδand nose shape CZ*were proposed to calculate aTB. In the liquid slug region, the radial void fraction distribution profiles were obtained to calculate aLS, by employing the image processing technique based on supervised machine learning. Results showed that the void fraction proportion in Taylor bubbles occupied crucial contribution to the overall void fraction. Multiple types of void fraction predictive correlations were assessed using the present data. The performance of the Schmidt model was optimal, while some models for slug flow performed not outstanding. Additionally, a predictive correlation was correlated between the central local void fraction and the cross-sectional averaged void fraction, as a straightforward form of the void fraction calculation model. The predictive correlation showed a good agreement with the present experimental data, as well as the data of Olerni et al., indicating that the new model was effective and applicable under the slug flow conditions.
基金the National Science Fund for Distinguished Young Scholars(No.52225507).
文摘The difficulty of obtaining high-intensity localized light spots for optical probes leads to their lack of good applications in nanoimaging.Here we demonstrate a Fabry–Pérot resonance flat-based plasmonic fiber probe(FPFP).The simulation results show that the probe can obtain a nanofocusing spot at the tip with the radially polarized mode.The Fabry–Pérot interference structure is used to control the plasmon propagation on the surface of the probe,it effectively improves the local spot intensity at the tip.Furthermore,the experimental results verify that the FPFP(tip curvature radius is 20 nm)prepared by chemical etching method can obtain a nanofocusing spot at the tip.The nanoimaging of the gold slit structure demonstrates the nanoimaging capability of the FPFP,the 36.9 nm slit width is clearly identified by the FPFP.
基金The Fundamental Research Funds for the Central Universities,China(No.2232015D3-15)Shanghai Natural Science Foundation,China(No.14ZR1401300)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
基金supported by the World Class University Program funded by the Ministry of Education, Science, and Technology through the National Research Foundation of Korea (No. R31-10008)supported in part by NIH (No. BRP 1R01 EB 007969- 01)
文摘An integrated microball lens fiber catheter probe is demonstrated, which has better lateral resolution and longer working distance than a corresponding bare fiber probe with diverging beam for Fourier domain optical coherence tomography (FDOCT). Simulation results are shown to gain the effect of the distance between the mieroball lens and the bare fiber to the focusing plane and beam width. The freedom of modifying the working distance and lateral resolution is shown. This is achieved by changing the gap distance between the single-mode fiber and the microball lens within the packaged surgical needle catheter without using an additional beam expander having a fixed length. The probe successfully acquired crosssectional images of ocular tissues from an animal sample with the proposed miniaturized imaging probe.
基金partially supported by the project Safe Land "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies" under Grant No. 226479 (7th Framework Programme)
文摘Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.
基金the Ministry of Education,Youth and Sports of the Czech Republic by the project‘Advanced Research Using High Intensity Laser Produced Photons and Particles’(CZ.02.1.010.00.016_0190000789)the IMPULSE project by the European Union Framework Program for Research and Innovation Horizon 2020 under grant agreement No.871161F.Grepl also received funding from the Czech Technical University through the student grant‘SGS16/248/OHK4/3T/14 Výkum optických(nano)struktur a laserového plazmatu’led by Dr.Ing.Ivan Richter(FIS:161-1611617D000).
文摘An optical probing of laser–plasma interactions can provide time-resolved measurements of plasma density;however,single-shot and multi-frame probing capabilities generally rely on complex setups with limited flexibility.We have demonstrated a new method for temporal resolution of the rapid dynamics(∼170 fs)of plasma evolution within a single laser shot based on the generation of several consecutive probe pulses from a single beta barium borate-based optical parametric amplifier using a fraction of the driver pulse with the possibility to adjust the central wavelengths and delays of particular pulses by optical delay lines.The flexibility and scalability of the proposed experimental technique are presented and discussed.
基金Supported by the State-funded Postgraduates’ Overseas Study Program of China Scholarship Council (CSC)
文摘Experiments were carried out to investigate the liquid flow distribution at high gas/liquid ratios in a cold model monolith bed of a 0.048 m diameter with 62 cells per cm2.Three types of distributor for the liquid distribu-tion were used to evaluate their distribution performance.Local liquid saturation in individual channels was meas-ured using 16 single-point optical fiber probes mounted inside the channels.The results indicate that 1) The optical fiber probe technique can measure phase distribution in the monolith bed;2) Liquid saturation distribution along the radial direction of the monolith bed is not uniform and the extent of non-uniformity depends on the distributor de-sign and phase velocities;and 3) The tube array distributor provides superior liquid distribution performance over the showerhead and nozzle distributors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10635010 and 10775103)
文摘This paper proposes a simple collisional-radiative model to characterise capacitively coupled argon plasmas driven by conventional radio frequency in combination with optical emission spectroscopy and Langmuir probe measurements. Two major processes are considered in this model, electron-impact excitation and the spontaneous radiative decay. The diffusion loss term, which is found to be important for the two metastable states (4s[3/2]2, 4s'[1/2]0), is also taken into account. Behaviours of representative metastable and radiative states are discussed. Two emission lines (located at 696.5 nm and 750.4 nm) are selected and intensities are measured to obtain populated densities of the corresponding radiative states in the argon plasma. The calculated results agree well with that measured by Langmuir probe, indicating that the current model combined with optical emission spectroscopy is a candidate tool for electron density and temperature measurement in radio frequency capacitively coupled discharges.
基金the National Key Research and Development Program of China(No.2021YFF0700402)the Program for Science and Technology Innovation Group of Shaanxi Province(No.2019TD-011)+1 种基金the Key Research and Development Program of Shaanxi Province(No.2020DLGY04-02)the Fundamental Research Funds for the Central Universities for their support.
文摘The properties of near-field optics have always been the focus of nano-measurement technology.The 11th order effective nearfield optical signal with an incident laser wavelength of 1,550 nm is obtained using a platinum-coated optical probe(Pt–Si probe).The experimental results show that the local electric field intensity of the Pt–Si probe is nearly 30 times higher than that of silicon probe(Si probe).Therefore,the highest 7th order near-field optical imaging results are obtained with the Pt–Si probe.Further,near-field optical imaging is performed on samples such as gold grids and carbon nanotubes using the Pt–Si probe.The measurement results show that the high-order signal has the characteristics of less background,higher signal-to-noise ratio,and resolution up to 5.7 nm.
基金Project supported by the National Natural Science Foundation of China (No. 20275033) and the Natural Science Foundation of Fujian Province of China (No. 2006J0173).
文摘A synthesized cyclometalated palladium-azo complex was explored as a multifunctional probe for visual detection of SO2, H2S and NH3 in water. In acidic aqueous environment, the sensing solution underwent a sharp color change from poor violet to deep blue when titrated with Na2SO3 standard solution. But the color changed from poor violet to bright yellow when titrated with Na2S standard solution. In basic environment, the sensing solution rapidly changed to magenta when titrated by NH4Cl-NH3 standard buffer solution at high concentration. However, the color of sensing solution changed to blue when titrated by NH4Cl-NH3 standard buffer solution at low concentration although the pH was kept constant during the titration. Different species of these hazardous gases at environmentally relevant concentration levels were differentiated by independent optical signal outputs, and the interference from other inorganic ions commonly existing in water was very small.