Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical inte...Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.展开更多
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation ...Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spec- tral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.展开更多
Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy d...Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation.展开更多
The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere ...The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.展开更多
文摘Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.
基金Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(GrantNo.2014BAC17B03)the National Natural Science Foundation of China(Grant No.11204320)
文摘Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spec- tral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
文摘Angular and radial distributions of the energy deposition of γ-ray radiation in scintillation optical fibres are simulated and analysed using the Geant4 system. The results show a linear relation between the energy deposition and the radius of the fibres. The deposition is roughly inversely proportional to sinθ with θ the incident angle relative to the fibre axis. The results could provide corrections to the measurements of the scintillation fibres used in monitoring the γ-ray radiation.
基金supported in part by the Division of Physical Sciences of RAS “Fundamental Problems of Photonics and Physics of New Optical Materials.”
文摘The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.